An Adaptive Model Following Control for Robotic Manipulators

1983 ◽  
Vol 105 (3) ◽  
pp. 143-151 ◽  
Author(s):  
A. Balestrino ◽  
G. De Maria ◽  
L. Sciavicco

The increased demand on robotic manipulator performances leads to the use of advanced control structures. An adaptive model following control system for robotic manipulators is developed via hyperstability theory. A new control algorithm is proposed that produces a discontinuous control signal, similar to a pulse amplitude signal, so that particular trajectories, referred as sliding modes, occur. The design procedure is simple and effective and always assures the asymptotic stability in the large. The decoupling properties can be achieved by a suitable choice of the reference model. A case study is developed by numerical simulation.

Author(s):  
Jinhua She ◽  
Lulu Wu ◽  
Zhen-Tao Liu ◽  
◽  
◽  
...  

Vibration suppression in servo systems is significant in high-precision motion control. This paper describes a vibration-suppression method based on input shaping and adaptive model-following control. First, a zero vibration input shaper is used to suppress the vibration caused by an elastic load to obtain an ideal position output. Then, a configuration that combines input shaping with model-following control is developed to suppress the vibration caused by changes of system parameters. Finally, analyzing the percentage residual vibration reveals that it is effective to employ the sum of squared position error as a criterion. Additionally, a golden-section search is used to adjust the parameters of a compensator in an online fashion to adapt to the changes in the vibration frequency. A comparison with other input shaper methods shows the effectiveness and superiority of the developed method.


Sign in / Sign up

Export Citation Format

Share Document