structure model
Recently Published Documents


TOTAL DOCUMENTS

2179
(FIVE YEARS 390)

H-INDEX

61
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Takumi Matsumoto ◽  
Ryuji Yamada ◽  
Satoshi Iizuka

Abstract New heat flow data corrected for climate change over the entire northeastern region of Japan were obtained using the temperature profile of the borehole of NIED High Sensitivity Seismograph Network (Hi-net). In addition, the crustal temperature structure was obtained by using a crustal structure model that takes into account the temperature dependence of thermal conductivity and the difference in heat generation due to lithology, using a crustal structure model that takes into account sedimentary layers rather than a uniform structure model with exposed bedrock at the surface. The results show that the crustal temperature structure in areas with thick sedimentary layers is improved compared to the previous model.


Author(s):  
A V Zolotaryuk ◽  
Yaroslav Zolotaryuk

Abstract A heterostructure composed of N parallel homogeneous layers is studied in the limit as their widths l1, . . . , lN shrink to zero. The problem is investigated in one dimension and the piecewise constant potential in the Schrödinger equation is given by the strengths V1, . . . , VN as functions of l1, . . . , lN, respectively. The key point is the derivation of the conditions on the functions V1(l1), . . . , VN(lN) for realizing a family of one-point interactions as l1, . . . , lN tend to zero along available paths in the N-dimensional space. The existence of equations for a squeezed structure, the solution of which determines the system parameter values, under which the non-zero tunneling of quantum particles through a multi-layer structure occurs, is shown to exist and depend on the paths. This tunneling appears as a result of an appropriate cancellation of divergences.


2022 ◽  
Author(s):  
Santiago M Bedoya ◽  
Marcelo Marucho

An accurate characterization of the polyelectrolyte properties of actin filaments might provide a deeper understanding of the fundamental mechanisms governing the intracellular ionic wave packet propagation in neurons. Infinitely long cylindrical models for actin filaments and approximate electrochemical theories for the electrolyte solutions were recently used to characterize these properties in in-vitro and intracellular conditions. This article uses a molecular structure model for actin filaments to investigate the impact of roughness and finite size on the mean electrical potential, ionic density distributions, currents, and conductivities. We solved the electrochemical theories numerically without further approximations. Our findings bring new insights into the electrochemical interactions between a filament′s irregular surface charge density and the surrounding medium. The irregular shape of the filament structure model generated pockets, or hot spots, where the current density reached higher or lower magnitudes than those in neighboring areas throughout the filament surface. It also revealed the formation of a well-defined asymmetric electrical double layer with a thickness larger than that commonly used for symmetric models.


2022 ◽  
Vol 23 (2) ◽  
pp. 701
Author(s):  
Yuki Ito ◽  
Takuya Araki ◽  
Shota Shiga ◽  
Hiroyuki Konno ◽  
Koki Makabe

Top7 is a de novo designed protein whose amino acid sequence has no evolutional trace. Such a property makes Top7 a suitable scaffold for studying the pure nature of protein and protein engineering applications. To use Top7 as an engineering scaffold, we initially attempted structure determination and found that crystals of our construct, which lacked the terminal hexahistidine tag, showed weak diffraction in X-ray structure determination. Thus, we decided to introduce surface residue mutations to facilitate crystal structure determination. The resulting surface mutants, Top7sm1 and Top7sm2, crystallized easily and diffracted to the resolution around 1.7 Å. Despite the improved data, we could not finalize the structures due to high R values. Although we could not identify the origin of the high R values of the surface mutants, we found that all the structures shared common packing architecture with consecutive intermolecular β-sheet formation aligned in one direction. Thus, we mutated the intermolecular interface to disrupt the intermolecular β-sheet formation, expecting to form a new crystal packing. The resulting mutant, Top7sm2-I68R, formed new crystal packing interactions as intended and diffracted to the resolution of 1.4 Å. The surface mutations contributed to crystal packing and high resolution. We finalized the structure model with the R/Rfree values of 0.20/0.24. Top7sm2-I68R can be a useful model protein due to its convenient structure determination.


2022 ◽  
Vol 1248 ◽  
pp. 131496
Author(s):  
Lin Qian ◽  
Chao Tao ◽  
Chao Ma ◽  
Jinkai Xue ◽  
Feiqiang Guo ◽  
...  

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121936
Author(s):  
Shuo Zhang ◽  
Zhiming Wang ◽  
Xiaodong Zhang ◽  
Jianping Wei ◽  
Fengjie Chen

Author(s):  
Mohamed Gamal Aboelhassan ◽  
Mohie Eldin Shoukry ◽  
Said Mohamed Allam

Abstract The main purpose of this paper is to study analytically the behavior of slender reinforced concrete columns existing in sway and non-sway structures. The studied variables were the stiffness of the beam connected to the slender columns, the stiffness of the bracing columns, and the number of bays and stories in the structure model. The stability of slender columns was studied and the required limits for the lateral bracing were determined using a finite element program to perform buckling analysis, linear analysis, and geometric nonlinear analysis for the different frame structural models. All the results obtained in this study were compared to the available methods included in the different building codes and the methods suggested by other researchers. The results indicated that the minimum value of the bracing limit, required to restrain the slender column against the side-sway, depends on the stiffness of the connecting beams, number of stories, and number of bays. The required bracing limit decreases with increasing the beam stiffness and with increasing the number of bays. However, the required bracing limit increases with the increase of the number of stories in the structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chun Huang

The risks of entrepreneurship platform are considered one of the most significant factors that affect regional economic development. However, the complexity of the constitutive relationship and the dynamics of the research process have made it difficult for studies to analyse the evolution and risks from the quantitative perspective. According to the analysis perspective of complex networks, this study determined the coupling relationship between the entrepreneurship platform network structure and complex network model. With the results studied and described in the paper, this study had constructed a platform structure model portraying the evolution process of the platform structure under two types of risks by using the simulation method. Three main conclusions are being drawn from the study: Firstly, endogenous and exogenous risks showed substantial results in affecting the changes in microentities and network relationship of enterprises within the platform, causing the robustness of platform to risk to differ significantly. Secondly, based on exogenous risks, the robustness distribution scaling from highest to lowest among three types of platforms studied is hub-and-spoke > mixed > market. Lastly, based on endogenous risk, the robustness distribution scaling from highest to lowest among the three types of platform studies is market > mixed > hub-and-spoke.


Sign in / Sign up

Export Citation Format

Share Document