input shaping
Recently Published Documents


TOTAL DOCUMENTS

542
(FIVE YEARS 59)

H-INDEX

39
(FIVE YEARS 4)

Author(s):  
Alicia Dautt-Silva ◽  
Raymond de Callafon

Abstract The task of trajectory planning for a dual-mirror optical pointing system greatly benefits from carefully designed dynamic input signals. This paper summarizes the application of multivariable input shaping (IS) for a dual-mirror system, starting from initial open-loop step-response data. The optical pointing system presented consists of two Fast Steering Mirrors (FSM) for which dynamically coupled input signals are designed, while adhering to mechanical and input signal constraints. For the solution, the planned trajectories for the dual-mirrors are determined via (inverse) kinematic analysis. A linear program (LP) problem is used to compute the dynamic input signal for each of the FSMs, with one of the mirrors acting as an image motion compensation device that guarantees tracking of a planned trajectory within a specified accuracy and the operating constraints of the FSMs.


2021 ◽  
Author(s):  
xu lu ◽  
DanPing Jia ◽  
HuaLiang Zhang ◽  
BingJie Zhao ◽  
Tao Zhang ◽  
...  

2021 ◽  
Author(s):  
Rim Jallouli-Khlif ◽  
Boutheina Maalej ◽  
Pierre Melchior ◽  
Nabil Derbel

2021 ◽  
Author(s):  
Artur AVAZOV

Type-IV wind turbines can experience torsional vibrations in the drivetrain structure. This can lead to additional stress on turbine components and a quality reduction of the power delivered to the grid. The vibrations are mostly induced by fast variations of the electromagnetic torque, which depends on the control of a back-to-back converter. A number of studies have already presented methods to mitigate the drivetrain vibrations. However, the research was dedicated to cases when the converter, interfacing a wind turbine to the grid, operates based on a grid-following control. A wind turbine can be also interfaced to a grid-forming converter. In this case, a back-to-back converter control creates a strong link between the electromagnetic torque and grid dynamics, so the abovementioned problem remains relevant. Therefore, this paper presents a solution to damp torsional vibrations in the direct drive of a Type-IV wind turbine, interfaced to the electrical power grid with a voltage source converter based on a grid-forming control. The damping of the drivetrain vibrations relies on the input shaping method implemented using a zero-vibration filter. Simulation results prove the effectiveness of the method to damp drivetrain vibrations during grid frequency variations. In addition to that, damping impact on system behavior with respect to other parameters is analyzed and its mitigation is discussed.


2021 ◽  
Author(s):  
Artur AVAZOV

Type-IV wind turbines can experience torsional vibrations in the drivetrain structure. This can lead to additional stress on turbine components and a quality reduction of the power delivered to the grid. The vibrations are mostly induced by fast variations of the electromagnetic torque, which depends on the control of a back-to-back converter. A number of studies have already presented methods to mitigate the drivetrain vibrations. However, the research was dedicated to cases when the converter, interfacing a wind turbine to the grid, operates based on a grid-following control. A wind turbine can be also interfaced to a grid-forming converter. In this case, a back-to-back converter control creates a strong link between the electromagnetic torque and grid dynamics, so the abovementioned problem remains relevant. Therefore, this paper presents a solution to damp torsional vibrations in the direct drive of a Type-IV wind turbine, interfaced to the electrical power grid with a voltage source converter based on a grid-forming control. The damping of the drivetrain vibrations relies on the input shaping method implemented using a zero-vibration filter. Simulation results prove the effectiveness of the method to damp drivetrain vibrations during grid frequency variations. In addition to that, damping impact on system behavior with respect to other parameters is analyzed and its mitigation is discussed.


Author(s):  
AbdulAziz Al-Fadhli ◽  
Emad Khorshid

Conventional input shaping commands have been successfully employed to suppress residual vibration in the payload rest-to-rest transportation process. Most of these methods introduce an impractical large and sudden variation on the acceleration profile. This paper presents a new smooth command input with adjustable time length and limited jerks. The command input is generated from the trolley displacement using a Bezier curve function by adjusting the position of the control points, which were divided into boundary and intermedium points. The boundary control points are selected to accurately move the trolley to its desired position with zero velocity and acceleration at the closing motion. The positions of the intermedium points were optimized using a particle swarm scheme for reducing maneuvering time while suppressing the payload oscillations at the end of the process and satisfying physical system constraints. Several cases were discussed for fixed cable length, variable cable involving single and multi-hoisting mechanisms, and different maneuver times. Simulated results were validated experimentally on a laboratory size crane. The results demonstrated that the proposed input Bezier-curve shaper provides an effective, reliable, and practical technique to be used for the payload transportation process. Moreover, the proposed method can generate asymmetrical acceleration and deceleration motions, which cannot be achieved using existing smoother commands.


Author(s):  
Minh-Nha Pham ◽  
Bruce Hazel ◽  
Philippe Hamelin ◽  
Zhaoheng Liu

Abstract Most industrial serial robots use decentralized joint controllers assuming rigid body dynamics. To prevent exciting the flexible mode, gains are kept low, resulting in poor control bandwidth and disturbance rejection. In this paper, a two-stage flexible joint discrete controller is presented, in which the decentralized approach is extended with a stiffness to take into account the dominant coupling mode. In the first-stage, an input shaping feedforward shapes the rigid closed-loop dynamics into desired dynamics that does not produce link vibrations. Robotic dynamic computation based on a recursive Newton-Euler Algorithm is conducted to update the feedforward link inertia parameter during robot motion. A second-stage is added to increase disturbance rejection. A generalized Smith predictor is developed to compensate for delay and feedback sensor filtering. An effective methodology is presented to optimize the control loop gains. Numerical simulations and experiments on a six-joint robot manipulator confirm that the proposed controller improves control performances in terms of bandwidth, vibration attenuation, and disturbance rejection.


Sign in / Sign up

Export Citation Format

Share Document