Optimal State Variable Feedback With Bounded Gains

1969 ◽  
Vol 91 (2) ◽  
pp. 251-256
Author(s):  
H. F. Millers ◽  
Y. Takahashi

The optimization of bounded feedback gains with respect to an arbitrary integral performance criterion is performed using nonlinear programming. The gradient projection method has been applied to several examples of fifth order, linear, and nonlinear, with good results.

1991 ◽  
Vol 02 (04) ◽  
pp. 331-339 ◽  
Author(s):  
Jiahan Chen ◽  
Michael A. Shanblatt ◽  
Chia-Yiu Maa

A method for improving the performance of artificial neural networks for linear and nonlinear programming is presented. By analyzing the behavior of the conventional penalty function, the reason for the inherent degenerating accuracy is discovered. Based on this, a new combination penalty function is proposed which can ensure that the equilibrium point is acceptably close to the optimal point. A known neural network model has been modified by using the new penalty function and the corresponding circuit scheme is given. Simulation results show that the relative error for linear and nonlinear programming is substantially reduced by the new method.


Sign in / Sign up

Export Citation Format

Share Document