penalty function
Recently Published Documents


TOTAL DOCUMENTS

1021
(FIVE YEARS 101)

H-INDEX

46
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 403
Author(s):  
Marzieh Mahrokh ◽  
Slawomir Koziel

The growing demand for the integration of surface mount design (SMD) antennas into miniaturized electronic devices has imposed increasing limitations on the structure dimensions. Examples include embedded antennas in applications such as on-board devices, picosatellites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of electrical and field performance can be managed through constrained numerical optimization. The reliability of optimization-based size reduction requires utilization of full-wave electromagnetic (EM) analysis, which entails significant computational costs. This can be alleviated by incorporating surrogate modeling techniques, adjoint sensitivities, or the employment of sparse sensitivity updates. An alternative is the incorporation of multi-fidelity simulation models, normally limited to two levels, low and high resolution. This paper proposes a novel algorithm for accelerated antenna miniaturization, featuring a continuous adjustment of the simulation model fidelity in the course of the optimization process. The model resolution is determined by factors related to violation of the design constraints as well as the convergence status of the algorithm. The algorithm utilizes the lowest-fidelity model for the early stages of the optimization process; it is gradually refined towards the highest-fidelity model upon approaching convergence, and the constraint violations improve towards the preset tolerance threshold. At the same time, a penalty function approach with adaptively adjusted coefficients is applied to enable the precise control of constraints, and to increase the achievable miniaturization rates. The presented procedure has been validated using five microstrip antennas, including three broadband, and two circularly polarized structures. The obtained results corroborate the relevance of the implemented mechanisms from the point of view of improving the average computational efficiency of the optimization process by 43% as compared to the single-fidelity adaptive penalty function approach. Furthermore, the presented methodology demonstrates a performance that is equivalent or even superior to its single-fidelity counterpart in terms of an average constraint violation of 0.01 dB (compared to 0.03 dB for the reference), and an average size reduction of 25% as compared to 25.6%.



2022 ◽  
pp. e735-e737
Keyword(s):  


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Chaowei Duan ◽  
Yiliu Liu ◽  
Changda Xing ◽  
Zhisheng Wang

An efficient method for the infrared and visible image fusion is presented using truncated Huber penalty function smoothing and visual saliency based threshold optimization. The method merges complementary information from multimodality source images into a more informative composite image in two-scale domain, in which the significant objects/regions are highlighted and rich feature information is preserved. Firstly, source images are decomposed into two-scale image representations, namely, the approximate and residual layers, using truncated Huber penalty function smoothing. Benefiting from the edge- and structure-preserving characteristics, the significant objects and regions in the source images are effectively extracted without halo artifacts around the edges. Secondly, a visual saliency based threshold optimization fusion rule is designed to fuse the approximate layers aiming to highlight the salient targets in infrared images and remain the high-intensity regions in visible images. The sparse representation based fusion rule is adopted to fuse the residual layers with the goal of acquiring rich detail texture information. Finally, combining the fused approximate and residual layers reconstructs the fused image with more natural visual effects. Sufficient experimental results demonstrate that the proposed method can achieve comparable or superior performances compared with several state-of-the-art fusion methods in visual results and objective assessments.



Author(s):  
Junqing Huang ◽  
Zhenhua Bao

In this paper, a discrete-time risk model with dividend strategy and a general premium rate is considered. Under such a strategy, once the insurer’s surplus hits a constant dividend barrier , dividends are paid off to shareholders at  instantly. Using the roots of a generalization of Lundberg’s fundamental equation and the general theory on difference equations, two difference equations for the Gerber-Shiu discounted penalty function are derived and solved. The analytic results obtained are utilized to derive the probability of ultimate ruin when the claim sizes is a mixture of two geometric distributions. Numerical examples are also given to illustrate the applicability of the results obtained.



AIChE Journal ◽  
2021 ◽  
Author(s):  
Xingwei Liu ◽  
Shengkun Jia ◽  
Yiqing Luo ◽  
Xigang Yuan


2021 ◽  
Author(s):  
Hiroki Kuroda ◽  
Daichi Kitahara

This paper presents a convex recovery method for block-sparse signals whose block partitions are unknown a priori. We first introduce a nonconvex penalty function, where the block partition is adapted for the signal of interest by minimizing the mixed l2/l1 norm over all possible block partitions. Then, by exploiting a variational representation of the l2 norm, we derive the proposed penalty function as a suitable convex relaxation of the nonconvex one. For a block-sparse recovery model designed with the proposed penalty, we develop an iterative algorithm which is guaranteed to converge to a globally optimal solution. Numerical experiments demonstrate the effectiveness of the proposed method.





Sign in / Sign up

Export Citation Format

Share Document