linear constraints
Recently Published Documents


TOTAL DOCUMENTS

835
(FIVE YEARS 171)

H-INDEX

34
(FIVE YEARS 5)

Informatics ◽  
2021 ◽  
Vol 18 (4) ◽  
pp. 79-95
Author(s):  
М. Ya. Kovalyov ◽  
B. M. Rozin ◽  
I. A. Shaternik

P u r p o s e s.  When designing a system of urban electric transport that charges while driving, including autonomous trolleybuses with batteries of increased capacity, it is important to optimize the charging infrastructure for a fleet of such vehicles. The charging infrastructure of the dedicated routes consists of overhead wire sections along the routes and stationary charging stations of a given type at the terminal stops of the routes. It is designed to ensure the movement of trolleybuses and restore the charge of their batteries, consumed in the sections of autonomous running.The aim of the study is to create models and methods for developing cost-effective solutions for charging infrastructure, ensuring the functioning of the autonomous trolleybus fleet, respecting a number of specific conditions. Conditions include ensuring a specified range of autonomous trolleybus running at a given rate of energy consumption on routes, a guaranteed service life of their batteries, as well as preventing the discharge of batteries below a critical level under various operating modes during their service life.M e t ho d s. Methods of set theory, graph theory and linear approximation are used.Re s u l t s. A mathematical model has been developed for the optimization problem of the charging infrastructure of the autonomous trolleybus fleet. The total reduced annual costs for the charging infrastructure are selected as the objective function. The model is formulated as a mathematical programming problem with a quadratic objective function and linear constraints.Co n c l u s i o n. To solve the formulated problem of mathematical programming, standard solvers such as IBM ILOG CPLEX can be used, as well as, taking into account its computational complexity, the heuristic method of "swarm of particles".  The solution to the problem is to select the configuration of the location of the overhead wire sections on the routes and the durations of charging the trolleybuses at the terminal stops, which determine the corresponding number of stationary charging stations at these stops.


Author(s):  
AKHILESH KUMAR ◽  
Anjana Gupta ◽  
Aparna Mehra

In this paper, a decision-support is developed for a strategic problem of identifying target prices for the single buyer to negotiate with multiple suppliers to achieve common goal of maintaining sustained business environment. For this purpose, oligopolistic-competitive equilibrium prices of suppliers are suggested to be considered as target prices. The problem of identifying these prices is modeled as a multi-leader-single-follower bilevel programming problem involving linear constraints and bilinear objective functions. Herein, the multiple suppliers are considered leaders competing in a Nash game to maximize individual profits, and the buyer is a follower responding with demand-order allocations to minimize the total procurement-cost. Profit of each supplier is formulated on assessing respective operational cost to fulfill demand-orders by integrating aggregate-production-distribution-planning mechanism into the problem. A genetic-algorithm-based technique is designed in general for solving large-scale instances of the variant of bilevel programming problems with multiple leaders and single follower, and the same is applied to solve the modeled problem. The developed decision support is appropriately demonstrated on the data of a leading FMCG manufacturing firm, which manufactures goods through multiple sourcing.


Author(s):  
P Kalugin ◽  
André Katz

Abstract We consider the pure point part of the diffraction on families of aperiodic point sets obeying common local rules. It is shown that imposing such rules results in linear constraints on the partial diffraction amplitudes. These relations can be explicitly derived from the geometry of the prototile space representing the local rules.


Author(s):  
Daniel Bartl ◽  
Samuel Drapeau ◽  
Jan Obłój ◽  
Johannes Wiesel

We consider sensitivity of a generic stochastic optimization problem to model uncertainty. We take a non-parametric approach and capture model uncertainty using Wasserstein balls around the postulated model. We provide explicit formulae for the first-order correction to both the value function and the optimizer and further extend our results to optimization under linear constraints. We present applications to statistics, machine learning, mathematical finance and uncertainty quantification. In particular, we provide an explicit first-order approximation for square-root LASSO regression coefficients and deduce coefficient shrinkage compared to the ordinary least-squares regression. We consider robustness of call option pricing and deduce a new Black–Scholes sensitivity, a non-parametric version of the so-called Vega. We also compute sensitivities of optimized certainty equivalents in finance and propose measures to quantify robustness of neural networks to adversarial examples.


2021 ◽  
Author(s):  
◽  
Amani Ahmed Otaif

<p>The aim of this thesis is to apply the Grünwald–Blaschke kinematic mapping to standard types of parallel general planar three-legged platforms in order to obtain the univariate polynomials which provide the solution of the forward kinematic problem. We rely on the method of Gröbner basis to reach these univariate polynomials. The Gröbner basis is determined from the constraint equations of the three legs of the platforms. The degrees of these polynomials are examined geometrically based on Bezout’s Theorem. The principle conclusion is that the univariate polynomials for the symmetric platforms under circular constraints are of degree six, which describe the maximum number of real solutions. The univariate polynomials for the symmetric platforms under linear constraints are of degree two, that describe the maximum number of real solutions.</p>


2021 ◽  
Author(s):  
◽  
Amani Ahmed Otaif

<p>The aim of this thesis is to apply the Grünwald–Blaschke kinematic mapping to standard types of parallel general planar three-legged platforms in order to obtain the univariate polynomials which provide the solution of the forward kinematic problem. We rely on the method of Gröbner basis to reach these univariate polynomials. The Gröbner basis is determined from the constraint equations of the three legs of the platforms. The degrees of these polynomials are examined geometrically based on Bezout’s Theorem. The principle conclusion is that the univariate polynomials for the symmetric platforms under circular constraints are of degree six, which describe the maximum number of real solutions. The univariate polynomials for the symmetric platforms under linear constraints are of degree two, that describe the maximum number of real solutions.</p>


Author(s):  
S. Kiyko ◽  
L. Deineha ◽  
M. Basanets ◽  
D. Kamienskyi ◽  
A. Didenko

The goal of the work was to identify research and compare methods of portfolio management of energy saving projects and to develop software for optimizing portfolio investments using several methods. The key elements and strategies of creating an effective investment portfolio are considered: diversification, rebalancing, active portfolio management, passive portfolio management. Given the basic principles of investment theory, the task of portfolio investment is to form an investment portfolio with known shares of certain assets to maximize returns and minimize risk. To solve this problem, the method of Harry Markowitz, known as modern portfolio theory, was chosen. This is the theory of financial investment, in which statistical methods are used to make the most profitable risk distribution of the securities portfolio and income valuation, its components are asset valuation, investment decisions, portfolio optimization, evaluation of results. From a mathematical point of view, the problem of forming an optimal portfolio is the problem of optimizing a quadratic function (finding the minimum) with linear constraints on the arguments of the function. Methods of optimization of portfolios of energy saving projects taking into account the specifics of the subject area are analyzed. According to the results of the analysis, the methods of finding the maximum Sharpe’s ratio and the minimum volatility from randomly generated portfolios were chosen. A software application has been developed that allows you to download data, generate random portfolios and optimize them with selected methods. A graphical display of portfolio optimization results has also been implemented. The program was tested on data on shares of energy saving companies. The graphs built by the program allow the operator to better assess the created portfolio of the energy saving project.


Sign in / Sign up

Export Citation Format

Share Document