A Green’s Function for the Stress-Intensity Factors of Edge Cracks and Its Application to Thermal Stresses

1969 ◽  
Vol 91 (4) ◽  
pp. 618-624 ◽  
Author(s):  
A. F. Emery ◽  
G. E. Walker ◽  
J. A. Williams

A Green’s function for the computation of stress-intensity factors for edge cracks in rectangular plates is given for any distribution of stress in the uncracked plate which is tensile over the crack length. The function is used to compute stress intensity factors for transient thermal stresses produced by sudden cooling of one edge. Experimentally measured stresses and stress-intensity factors are given and shown to be in good agreement with the predicted values.

2009 ◽  
Vol 44 (6) ◽  
pp. 427-438 ◽  
Author(s):  
B Neethi Simon ◽  
R G R Prasath ◽  
K Ramesh

Transient thermal stresses of a bimaterial specimen with interface edge cracks subjected to heating along an edge is analysed by refined three-fringe photoelasticity (RTFP). Whole-field, noise-free, fringe order estimation using a single colour image is made possible using RTFP combined with colour adaptation. The stress intensity factors (SIFs) of the interface crack are determined through a multiparameter overdeterministic system of equations by a least-squares approach using experimental data collected automatically. The transient SIFs are found to peak to a higher value than in steady state, and the opening mode is found to be dominant. An increase in thermal load causes the crack to propagate, and this is easily visualized on the basis of quantitative fringe order data available for the whole field. The SIFs of a propagating crack are found to be low. The study shows that the crack propagates easily when the opening mode is dominant.


2008 ◽  
Vol 383 ◽  
pp. 67-84 ◽  
Author(s):  
M. Denda

A boundary element method (BEM) for the analysis of the semipermeable crack is developed using the numerical Green’s function approach. The extended crack opening displacement (COD) of a straight crack is represented by the continuous distribution of extended dislocation dipoles, with the built-in √r COD behavior, which is integrated analytically to give the whole crack singular element (WCSE) equipped with the √r COD and the 1/√r crack tip extended stress singularity. Linear BEM solvers for the impermeable and permeable cracks are developed first and then an iterative procedure to reach the semipermeable solution using the impermeable and permeable solvers is proposed. The convergence study is performed for the single cracks in the infinite and finite bodies with associated numerical results for the extended stress intensity factors (SIFs) and other variables. The proposed numerical Green’s function approach does not require the post-processing for the accurate determination of the extended stress intensity factors and is ideally suited for the proposed nonlinear iteration scheme for the semipermeable cracks.


2011 ◽  
Vol 241 (9) ◽  
pp. 3613-3623 ◽  
Author(s):  
Zhen-huan Zhou ◽  
Xin-sheng Xu ◽  
Andrew Yee-tak Leung ◽  
Zhen-qun Guan

Sign in / Sign up

Export Citation Format

Share Document