Fractional Optimal Control Problems With Specified Final Time

Author(s):  
Raj Kumar Biswas ◽  
Siddhartha Sen

A constrained dynamic optimization problem of a fractional order system with fixed final time has been considered here. This paper presents a general formulation and solution scheme of a class of fractional optimal control problems. The dynamic constraint is described by a fractional differential equation of order less than 1, and the fractional derivative is defined in terms of Riemann–Liouville. The performance index includes the terminal cost function in addition to the integral cost function. A general transversility condition in addition to the optimal conditions has been obtained using the Hamiltonian approach. Both the specified and unspecified final state cases have been considered. A numerical technique using the Grünwald–Letnikov definition is used to solve the resulting equations obtained from the formulation. Numerical examples are provided to show the effectiveness of the formulation and solution scheme. It has been observed that the numerical solutions approach the analytical solutions as the order of the fractional derivatives approach 1.

2016 ◽  
Vol 24 (9) ◽  
pp. 1741-1756 ◽  
Author(s):  
Seyed Ali Rakhshan ◽  
Sohrab Effati ◽  
Ali Vahidian Kamyad

The performance index of both the state and control variables with a constrained dynamic optimization problem of a fractional order system with fixed final Time have been considered here. This paper presents a general formulation and solution scheme of a class of fractional optimal control problems. The method is based upon finding the numerical solution of the Hamilton–Jacobi–Bellman equation, corresponding to this problem, by the Legendre–Gauss collocation method. The main reason for using this technique is its efficiency and simple application. Also, in this work, we use the fractional derivative in the Riemann–Liouville sense and explain our method for a fractional derivative of order of [Formula: see text]. Numerical examples are provided to show the effectiveness of the formulation and solution scheme.


SeMA Journal ◽  
2017 ◽  
Vol 74 (4) ◽  
pp. 585-603 ◽  
Author(s):  
Samaneh Soradi Zeid ◽  
Ali Vahidian Kamyad ◽  
Sohrab Effati ◽  
Seyed Ali Rakhshan ◽  
Soleiman Hosseinpour

Sign in / Sign up

Export Citation Format

Share Document