bernoulli polynomials
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 155)

H-INDEX

20
(FIVE YEARS 6)

2021 ◽  
Vol 27 (4) ◽  
pp. 180-186
Author(s):  
André Pierro de Camargo ◽  
◽  
Giulliano Cogui de Oliveira Teruya ◽  

A problem posed by Lehmer in 1938 asks for simple closed formulae for the values of the even Bernoulli polynomials at rational arguments in terms of the Bernoulli numbers. We discuss this problem based on the Fourier expansion of the Bernoulli polynomials. We also give some necessary and sufficient conditions for ζ(2k + 1) be a rational multiple of π2k+1.


2021 ◽  
Vol 45 (6) ◽  
pp. 859-872
Author(s):  
WASEEM A. KHAN ◽  
◽  
DIVESH SRIVASTAVA

This paper is well designed to set-up some new identities related to generalized Apostol-type Hermite-based-Frobenius-Genocchi polynomials and by applying the generating functions, we derive some implicit summation formulae and symmetric identities. Further a relationship between Array-type polynomials, Apostol-type Bernoulli polynomials and generalized Apostol-type Frobenius-Genocchi polynomials is also established.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hye Kyung Kim ◽  
Taekyun Kim

AbstractIn this paper, we introduce poly-central factorial sequences and poly-central Bell polynomials arising from the polyexponential functions, reducing them to central factorials and central Bell polynomials of the second kind respectively when $k = 1$ k = 1 . We also show some relations: between poly-central factorial sequences and power of x; between poly-central Bell polynomials and power of x; between poly-central Bell polynomials and the poly-Bell polynomials; between poly-central Bell polynomials and higher order type 2 Bernoulli polynomials of second kind; recurrence formula of poly-central Bell polynomials.


2021 ◽  
Vol 5 (4) ◽  
pp. 219
Author(s):  
Somayeh Nemati ◽  
Pedro M. Lima ◽  
Delfim F. M. Torres

We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-order fractional differential equations. The variable-order fractional derivative was considered in the Caputo sense, while the Riemann–Liouville integral operator was used to give approximations for the unknown function and its variable-order derivatives. An operational matrix of variable-order fractional integration was introduced for the Bernoulli functions. By assuming that the solution of the problem is sufficiently smooth, we approximated a given order of its derivative using Bernoulli polynomials. Then, we used the introduced operational matrix to find some approximations for the unknown function and its derivatives. Using these approximations and some collocation points, the problem was reduced to the solution of a system of nonlinear algebraic equations. An error estimate is given for the approximate solution obtained by the proposed method. Finally, five illustrative examples were considered to demonstrate the applicability and high accuracy of the proposed technique, comparing our results with the ones obtained by existing methods in the literature and making clear the novelty of the work. The numerical results showed that the new method is efficient, giving high-accuracy approximate solutions even with a small number of basis functions and when the solution to the problem is not infinitely differentiable, providing better results and a smaller number of basis functions when compared to state-of-the-art methods.


2021 ◽  
Vol 5 (4) ◽  
pp. 212
Author(s):  
Monireh Nosrati Sahlan ◽  
Hojjat Afshari ◽  
Jehad Alzabut ◽  
Ghada Alobaidi

In this paper, fractional-order Bernoulli wavelets based on the Bernoulli polynomials are constructed and applied to evaluate the numerical solution of the general form of Caputo fractional order diffusion wave equations. The operational matrices of ordinary and fractional derivatives for Bernoulli wavelets are set via fractional Riemann–Liouville integral operator. Then, these wavelets and their operational matrices are utilized to reduce the nonlinear fractional problem to a set of algebraic equations. For solving the obtained system of equations, Galerkin and collocation spectral methods are employed. To demonstrate the validity and applicability of the presented method, we offer five significant examples, including generalized Cattaneo diffusion wave and Klein–Gordon equations. The implementation of algorithms exposes high accuracy of the presented numerical method. The advantage of having compact support and orthogonality of these family of wavelets trigger having sparse operational matrices, which reduces the computational time and CPU requirements.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Dae San Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon ◽  
Si-Hyeon Lee ◽  
Seongho Park

AbstractThe aim of this paper is to determine the λ-linear functionals sending any given polynomial $p(x)$ p ( x ) with coefficients in $\mathbb{C}_{p}$ C p to the p-adic invariant integral of $P(x)$ P ( x ) on $\mathbb{Z}_{p}$ Z p and also to that of $P(x_{1}+\cdots +x_{r})$ P ( x 1 + ⋯ + x r ) on $\mathbb{Z}_{p}^{r}$ Z p r . We show that the former is given by the generating function of degenerate Bernoulli polynomials and the latter by that of degenerate Bernoulli polynomials of order r. For this purpose, we use the λ-umbral algebra which has been recently introduced by Kim and Kim (J. Math. Anal. Appl. 493(1):124521 2021).


Sign in / Sign up

Export Citation Format

Share Document