Fault, State, and Unknown Input Reconstruction in Nonlinear Systems Using Sliding Mode Observers

Author(s):  
Sharma R ◽  
Aldeen M

In this paper, a new approach to estimation of unknown inputs and faults in a class of nonlinear systems is presented. The approach is based on the design of a cascade connection of two sliding mode observers. The first observer is used for the estimation of state and unknown inputs and the second is used for the fault detection and isolation. An important feature of the proposed approach is that the state trajectories do not leave the sliding manifold even in the presence of unknown inputs and faults. This allows for faults and unknown inputs to be completely reconstructed based on the information retrieved from the equivalent output injection signals. The proposed approach is tested on a nonlinear model of single link flexible joint robot system.

Automatica ◽  
2010 ◽  
Vol 46 (2) ◽  
pp. 347-353 ◽  
Author(s):  
Karanjit Kalsi ◽  
Jianming Lian ◽  
Stefen Hui ◽  
Stanislaw H. Żak

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Jing He ◽  
Changfan Zhang

This paper presents a precision fault reconstruction scheme for a class of nonlinear systems involving unknown input disturbances. First, using the coordinate transformation algorithm, the disturbances and faults of the system are fully decoupled. Therefore, it is possible to eliminate the influence of disturbances to the system, namely, better disturbances robustness. On this basis, the design of a sliding mode state observer makes the most genuine reconstruction realizable, instead of estimation of faults. Furthermore, with the equivalent principle of sliding mode variable structure, the precision reconstruction of arbitrary nonlinear faults is achieved. Finally, the applications of fault reconstruction in a third-order nonlinear theoretical model with disturbances and in a single-link robot system, respectively, have demonstrated the validity of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document