fault detection and isolation
Recently Published Documents


TOTAL DOCUMENTS

1765
(FIVE YEARS 300)

H-INDEX

54
(FIVE YEARS 9)

Author(s):  
Sara Ruiz-Moreno ◽  
Adolfo J. Sanchez ◽  
Antonio J. Gallego ◽  
Eduardo F. Camacho

2021 ◽  
Vol 54 (6) ◽  
pp. 827-833
Author(s):  
Ayman Abboudi ◽  
Fouad Belmajdoub

Safety, availability and reliability are the main concern of many industries. Thus, fault detection and isolation of industrial machines, which are in most cases switched systems, is a primary task in many companies. The presented paper proposes a new diagnostic approach for switched systems using two powerful tools: bond graph and observer. A diagnostic layer detects model errors using bond graph, and a smart algorithm identifies and locates faults using observer. Although observers serve as fault detectors, they also have their own errors caused by convergence delay of calculations; even in the case of no sensor defect, the residue does not converge to zero. In this paper, we propose a new method to solve this problem by integrating dynamic thresholds in the detection procedure, which helped to avoid false alarms and ensure a highly reliable diagnosis.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Vicente Borja-Jaimes ◽  
Manuel Adam-Medina ◽  
Betty Yolanda López-Zapata ◽  
Luis Gerardo Vela Valdés ◽  
Luisana Claudio Pachecano ◽  
...  

A fault detection and isolation (FDI) approach based on nonlinear sliding mode observers for a wind turbine model is presented. Problems surrounding pitch and drive train system FDI are addressed. This topic has generated great interest because the early detection of faults in these components allows avoiding irreparable damage in wind turbines. A fault diagnosis strategy using nonlinear sliding mode observer banks is proposed due to its ability to handle model uncertainties and external disturbances. Unlike the reported solutions, the solution approach does not need a priori knowledge of the faults and considers system uncertainty. The robustness to disturbances, uncertainties, and measurement noise is shown in the dynamic of the generated residuals, which is sensible to only one kind of fault. To show the effectiveness of the proposed FDI approach, numerical examples based on a wind turbine benchmark model, considering closed loop applications, are presented.


Author(s):  
Anass Taoufik ◽  
Michael Defoort ◽  
Mohamed Djemai ◽  
Krishna Busawon

AbstractThis paper deals with the problem of distributed fault detection and isolation in multi-agent systems with disturbed high-order dynamics subject to communication uncertainties and faults. Distributed finite-frequency mixed $${\mathcal {H}}_-$$ H - $$/{\mathcal {H}}_\infty $$ / H ∞ unknown input observers are designed to detect and distinguish actuator, sensor and communication faults. Furthermore, an agent is capable of detecting not only its own faults but also faults in its neighbouring agents. Sufficient conditions are then derived in terms of a set of linear matrix inequalities while adding additional design variables to reduce the conservatism. A numerical simulation is carried out in order to demonstrate the effectiveness of the proposed approach.


2021 ◽  
Vol 11 (24) ◽  
pp. 11993
Author(s):  
Gustavo Pérez-Zuñiga ◽  
Javier Sotomayor-Moriano ◽  
Raul Rivas-Perez ◽  
Victor Sanchez-Zurita

Fault detection and isolation (FDI) in oil pipeline systems (OPS) is a very critical issue because faults in these systems such as leaks or equipment malfunctions may cause significant safety accidents and economic losses. These are the challenging factors, along with the environmental regulations for developing efficient FDI approaches for OPS. This paper proposes a model-based distributed FDI approach, which uses a structural model of the system in conjunction with algorithms to generate diagnostic tests that may be implemented in local diagnosers along the OPS. The proposed approach allows detection and isolation of faults in pipeline sections (pipeline segments), pump stations, as well as process control equipment. In this way, simulation of the obtained diagnostic tests in a benchmark application shows that all faults of interest (pipeline segment faults and sensor faults) are detected and isolated.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 337
Author(s):  
Amare Desalegn Fentaye ◽  
Valentina Zaccaria ◽  
Konstantinos Kyprianidis

The rapid advancement of machine-learning techniques has played a significant role in the evolution of engine health management technology. In the last decade, deep-learning methods have received a great deal of attention in many application domains, including object recognition and computer vision. Recently, there has been a rapid rise in the use of convolutional neural networks for rotating machinery diagnostics inspired by their powerful feature learning and classification capability. However, the application in the field of gas turbine diagnostics is still limited. This paper presents a gas turbine fault detection and isolation method using modular convolutional neural networks preceded by a physics-driven performance-trend-monitoring system. The trend-monitoring system was employed to capture performance changes due to degradation, establish a new baseline when it is needed, and generatefault signatures. The fault detection and isolation system was trained to step-by-step detect and classify gas path faults to the component level using fault signatures obtained from the physics part. The performance of the method proposed was evaluated based on different fault scenarios for a three-shaft turbofan engine, under significant measurement noise to ensure model robustness. Two comparative assessments were also carried out: with a single convolutional-neural-network-architecture-based fault classification method and with a deep long short-term memory-assisted fault detection and isolation method. The results obtained revealed the performance of the proposed method to detect and isolate multiple gas path faults with over 96% accuracy. Moreover, sharing diagnostic tasks with modular architectures is seen as relevant to significantly enhance diagnostic accuracy.


2021 ◽  
Vol 30 (1) ◽  
pp. 53-78
Author(s):  
Masood Ahmad ◽  
Rosmiwati Mohd-Mokhta

With the ongoing increase in complexity, less tolerance to performance degradation and safety requirements of practical systems has increased the necessity of fault detection (FD) as early as possible. During the last few decades, many research findings have been developed in fault diagnosis that addresses the issue of fault detection and isolation in linear and nonlinear systems. The paper’s objective is to present a survey on various state-of-art model-based FD techniques developed for linear time-invariant (LTI) systems for the interested readers to learn about recent development in this field. Model-based FD techniques for LTI systems are classified as parameter-estimation methods, parity-space-based methods, and observer-based methods. The background and recent progress, in context to fault detection, of each of these methods and their practical applications are discussed in this paper. Furthermore, two different FD techniques are compared via analytical equations and simulation results obtained from the DC motor model. In the end, possible future research directions in model-based FD, particularly for the LTI system, are highlighted for prosperous researchers. A comparison and emerging research topic make this contribution different from the existing survey papers on FD.


Sign in / Sign up

Export Citation Format

Share Document