Numerical Analysis of a Molten Carbonate Fuel Cell Stack in Emergency Scenarios

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Arkadiusz Szczęśniak ◽  
Jarosław Milewski ◽  
Łukasz Szabłowski ◽  
Olaf Dybiński ◽  
Kamil Futyma

Abstract Molten carbonate fuel cells (MCFCs) offer several advantages that are attracting an increasingly intense research and development effort. Recent advances include improved materials and fabrication techniques as well as new designs, flow configurations, and applications. Several factors are holding back large-scale implementation of fuel cells, though, especially in distributed energy generation, a major one being their long response time to changing parameters. Alternative mathematical models of the molten carbonate fuel cell stack have been developed over the last decade. This study investigates a generic molten carbonate fuel cell stack with a nominal power output of 1 kWel. As daily, weekly, and monthly variations in the electrical power load are expected, there is a need to develop numerical tools to predict the unit’s performance with high accuracy. Hence, a fully physical dynamic model of an MCFC stack was developed and implemented in aspen hysys 10 modeling software to enable a predictive analysis of the dynamic response. The presented model exhibits high accuracy and accounts for thermal and electrochemical processes and parameters. The authors present a numerical analysis of an MCFC stack in emergency scenarios. Further functionality of the model, which was validated using real operational data, is discussed.

Author(s):  
Chengzhuang Lu ◽  
Ruiyun Zhang ◽  
Guanjun Yang ◽  
Hua Huang ◽  
Jian Cheng ◽  
...  

AbstractThe use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide. This work explores the performance of a 10 kW high-temperature molten carbonate fuel cell. The key materials of a single cell were characterized and analyzed using X-ray diffraction and scanning electron microscopy. The results show that the pore size of the key electrode material is 6.5 µm and the matrix material is α-LiAlO2. Experimentally, the open circuit voltage of the single cell was found to be 1.23 V. The current density was greater than 100 mA/cm2 at an operating voltage of 0.7 V. The 10 kW fuel cell stack comprised 80 single fuel cells with a total area of 2000 cm2 and achieved an open circuit voltage of greater than 85 V. The fuel cell stack power and current density could reach 11.7 kW and 104.5 mA/cm2 at an operating voltage of 56 V. The influence and long-term stable operation of the stack were also analyzed and discussed. The successful operation of a 10 kW high-temperature fuel cell promotes the large-scale use of fuel cells and provides a research basis for future investigations of fuel cell capacity enhancement and distributed generation in China.


Sign in / Sign up

Export Citation Format

Share Document