cell voltage
Recently Published Documents


TOTAL DOCUMENTS

1245
(FIVE YEARS 306)

H-INDEX

68
(FIVE YEARS 11)

2022 ◽  
Vol 309 ◽  
pp. 118331
Author(s):  
Norbert Weber ◽  
Carolina Duczek ◽  
Gerrit M. Horstmann ◽  
Steffen Landgraf ◽  
Michael Nimtz ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Htoo Nay Wunn ◽  
Shinichi Motoda ◽  
Motoaki Morita

One of the effective ways of utilizing marine environments is to generate energy, power, and hydrogen via the effect of photocatalysts in the seawater. Since the ocean is vast, we are able to use its large area, but the power generation system must be of low cost and have high durability against both force and corrosion. In order to meet those requirements, this study focuses on the fabrication of a novel marine wet solar cell composed of a titanium dioxide photoanode and a copper oxide photocathode. These electrodes were deposited on type 329J4L stainless steel, which possesses relative durability in marine environments. This study focuses on the characterization of the photocatalytic properties of electrodes in seawater. Low-cost manufacturing processes of screen-printing and vacuum vapor deposition were applied to produce the titanium dioxide and copper oxides electrodes, respectively. We investigated the photopotential of the electrodes, along with the electrochemical properties and cell voltage properties of the cell. X-ray diffraction spectroscopy (XRD) of the copper oxides electrode was analyzed in association with the loss of photocatalytic effect in the copper oxides electrode. Although the conversion efficiency of the wet cell was less than 1%, it showed promising potential for use in marine environments with low-cost production. Electrochemical impedance spectroscopy (EIS) of the cell was also conducted, from which impedance values regarding the electrical properties of electrodes and their interfaces of charge-transfer processes were obtained. This study focuses on the early phase of the marine wet solar cell, which should be further studied for long-term stability and in actual marine environmental applications.


2022 ◽  
Vol 13 ◽  
Author(s):  
Woosuk Chung ◽  
Dian-Shi Wang ◽  
Shahin Khodaei ◽  
Arsene Pinguelo ◽  
Beverley A. Orser

Background: Perioperative neurocognitive disorders (PNDs) occur commonly in older patients after anesthesia and surgery. Treating astrocytes with general anesthetic drugs stimulates the release of soluble factors that increase the cell-surface expression and function of GABAA receptors in neurons. Such crosstalk may contribute to PNDs; however, the receptor targets in astrocytes for anesthetic drugs have not been identified. GABAA receptors, which are the major targets of general anesthetic drugs in neurons, are also expressed in astrocytes, raising the possibility that these drugs act on GABAA receptors in astrocytes to trigger the release of soluble factors. To date, no study has directly examined the sensitivity of GABAA receptors in astrocytes to general anesthetic drugs that are frequently used in clinical practice. Thus, the goal of this study was to determine whether the function of GABAA receptors in astrocytes was modulated by the intravenous anesthetic etomidate and the inhaled anesthetic sevoflurane.Methods: Whole-cell voltage-clamp recordings were performed in astrocytes in the stratum radiatum of the CA1 region of hippocampal slices isolated from C57BL/6 male mice. Astrocytes were identified by their morphologic and electrophysiologic properties. Focal puff application of GABA (300 μM) was applied with a Picospritzer system to evoke GABA responses. Currents were studied before and during the application of the non-competitive GABAA receptor antagonist picrotoxin (0.5 mM), or etomidate (100 μM) or sevoflurane (532 μM).Results: GABA consistently evoked inward currents that were inhibited by picrotoxin. Etomidate increased the amplitude of the peak current by 35.0 ± 24.4% and prolonged the decay time by 27.2 ± 24.3% (n = 7, P < 0.05). Sevoflurane prolonged current decay by 28.3 ± 23.1% (n = 7, P < 0.05) but did not alter the peak amplitude. Etomidate and sevoflurane increased charge transfer (area) by 71.2 ± 45.9% and 51.8 ± 48.9% (n = 7, P < 0.05), respectively.Conclusion: The function of astrocytic GABAA receptors in the hippocampus was increased by etomidate and sevoflurane. Future studies will determine whether these general anesthetic drugs act on astrocytic GABAA receptors to stimulate the release of soluble factors that may contribute to PNDs.


2022 ◽  
Vol 334 ◽  
pp. 04006
Author(s):  
Eleonora Gadducci ◽  
Stefano Saccaro ◽  
Massimo Rivarolo ◽  
Loredana Magistri

Hydrogen is a promising energy carrier to allow the reach of the zero-emission targets established for the next years. Polymeric Electrolyte Membrane FC are studied inside the HI-SEA laboratory of the University of Genoa, to assess the opportunities of this technology on marine applications. Here, 8 PEMFC stacks, sized 30 kW each for a total power installation of 240 kW, have been tested to draw guidelines for the best system design onboard ships and to deepen the know-how on the experimental management of the technology. During the tests, it was possible to observe the reciprocal influence of some parameters, which may influence the system efficiency. In this work, a statistical investigation is developed to quantify the cell voltage variation correlated to the values of temperature and current. This has been possible thanks to Design Expert (DE), a software developed by Stat-EASE, Inc. Through the Design of Experiment approach, it is possible to evaluate the significance of variables in the FC system, called factors. The experiment under consideration is also characterized by non-controllable factors, cause of disturbances that induce further variability in the response. Eventually, it was possible to analyse the significance of the parameters involved, to build a regression model by performing the analysis of variance with which the significant values are identified, and to assess the presence of outliers.


2022 ◽  
Vol 305 ◽  
pp. 117735
Author(s):  
Ran Pang ◽  
Caizhi Zhang ◽  
Haifeng Dai ◽  
Yunfeng Bai ◽  
Dong Hao ◽  
...  

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Zhen Liu ◽  
Jun Cheng ◽  
Oliver Höfft ◽  
Frank Endres

The electrochemical behavior and electrodeposition of indium in an electrolyte composed of 0.1 mol/L InCl3 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSI) on a gold electrode were investigated. The cyclic voltammogram revealed several reduction and oxidation peaks, indicating a complex electrochemical behavior. In the cathodic regime, with the formation of an In-Au alloy, the reduction of In(III) to In(I) and of In(I) to In(0) takes place. In situ electrochemical X-ray photoelectron spectroscopy (XPS) was employed to investigate the reduction process by monitoring the oxidation states of the components during the cathodic polarization of 0.1 mol/L InCl3/[Py1,4]TFSI on a gold working electrode under ultra-high vacuum (UHV) conditions. The core electron binding energies of the IL components (C 1s, O 1s, F 1s, N 1s, and S 2p) shift almost linearly to more negative values as a function of the applied cell voltage. At −2.0 V versus Pt-quasi reference, In(I) was identified as the intermediate species during the reduction process. In the anodic regime, a strong increase in the pressure in the XPS chamber was recorded at a cell voltage of more than −0.5 V versus Pt quasi reference, which indicated, in addition to the oxidation reactions of In species, that the oxidation of Cl− occurs. Ex situ XPS and XRD results revealed the formation of metallic In and of an In-Au alloy.


2021 ◽  
Author(s):  
Katherine C. M. Chew ◽  
Vineet Kumar ◽  
Andrew Y. Y. Tan

Tone-evoked synaptic excitation and inhibition are highly correlated in many neurons with V-shaped tuning curves in the primary auditory cortex of pentobarbital-anesthetized rats. In contrast, there is less correlation between spontaneous excitation and inhibition in visual cortex neurons under the same anesthetic conditions. However, it was not known whether the primary auditory cortex resembles visual cortex in having spontaneous excitation and inhibition that is less correlated than tone-evoked excitation and inhibition. Here we report whole-cell voltage-clamp measurements of spontaneous excitation and inhibition in primary auditory cortex neurons of pentobarbital-anesthetized rats. The larger excursions of both spontaneous excitatory and inhibitory currents appeared to consist of distinct events, with the inhibitory event rate typically lower than the excitatory event rate. We use the ratio of the excitatory event rate to the inhibitory event rate, and the assumption that the excitatory and inhibitory synaptic currents can each be reasonably described as a filtered Poisson process, to estimate the maximum spontaneous excitatory-inhibitory correlation for each neuron. In a subset of neurons, we also measured tone-evoked excitation and inhibition. In neurons with V-shaped tuning curves, although tone-evoked excitation and inhibition were highly correlated, the spontaneous inhibitory event rate was typically sufficiently lower than the spontaneous excitatory event rate to indicate a lower excitatory-inhibitory correlation for spontaneous activity than for tone-evoked responses.


Author(s):  
Agate Martin ◽  
Patrick Trinke ◽  
Markus Stähler ◽  
Andrea Stähler ◽  
Fabian Scheepers ◽  
...  

Abstract Hydrogen crossover poses a crucial issue for polymer electrolyte membrane (PEM) water electrolysers in terms of safe operation and efficiency losses, especially at increased hydrogen pressures. Besides the impact of external operating conditions, the structural properties of the materials also influence the mass transport within the cell. In this study, we provide an analysis of the effect of elevated cathode pressures (up to 15 bar) in addition to increased compression of the membrane electrode assembly on hydrogen crossover and the cell performance, using thin Nafion 212 membranes and current densities up to 3.6 A cm-2. It is shown that a higher compression leads to increased mass transport overpotentials, although the overall cell performance is improved due to the decreased ohmic losses. The mass transport limitations also become visible in enhanced anodic hydrogen contents with increasing compression at high current densities. Moreover, increases in cathode pressure are amplifying the compression effect on hydrogen crossover and mass transport losses. The results indicate that the cell voltage should not be the only criterion for optimizing the system design, but that the material design has to be considered for the reduction of hydrogen crossover in PEM water electrolysis.


Author(s):  
Xianglin Liu ◽  
Yongsong Ma ◽  
Peng Li ◽  
Huayi Yin ◽  
Dihua Wang

Abstract MoB2 is synthesized by the electrochemical reduction of solid MoS2/B mixture in molten NaCl-KCl at 700 oC. Unlike the traditional methods, the electrolysis method employs the low-cost MoS2 feedstock and the boronization reaction happens at a low temperature of 700 oC. The electrochemically induced boronization involves two steps: the electrochemical desulfurization to generate Mo and the reaction of Mo with B to form MoB2. The S2- released from the reduction of MoS2 transfers to the carbon anode and is oxidized to sulfur gas, realizing a green synthetic process. In addition, the influences of molar ratio of MoS2 and amorphous boron and electrolysis cell voltage on the phase composition and morphology of electrolytic products were studied. The obtained MoB2 particles possess a uniform nodular morphology. Overall, this paper provides a straightforward and green process to prepare MoB2 nanoparticles using economically affordable raw materials at low temperature, and this method can be extended to prepare other borides.


Sign in / Sign up

Export Citation Format

Share Document