scholarly journals Study and performance test of 10 kW molten carbonate fuel cell power generation system

Author(s):  
Chengzhuang Lu ◽  
Ruiyun Zhang ◽  
Guanjun Yang ◽  
Hua Huang ◽  
Jian Cheng ◽  
...  

AbstractThe use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide. This work explores the performance of a 10 kW high-temperature molten carbonate fuel cell. The key materials of a single cell were characterized and analyzed using X-ray diffraction and scanning electron microscopy. The results show that the pore size of the key electrode material is 6.5 µm and the matrix material is α-LiAlO2. Experimentally, the open circuit voltage of the single cell was found to be 1.23 V. The current density was greater than 100 mA/cm2 at an operating voltage of 0.7 V. The 10 kW fuel cell stack comprised 80 single fuel cells with a total area of 2000 cm2 and achieved an open circuit voltage of greater than 85 V. The fuel cell stack power and current density could reach 11.7 kW and 104.5 mA/cm2 at an operating voltage of 56 V. The influence and long-term stable operation of the stack were also analyzed and discussed. The successful operation of a 10 kW high-temperature fuel cell promotes the large-scale use of fuel cells and provides a research basis for future investigations of fuel cell capacity enhancement and distributed generation in China.

2020 ◽  
Author(s):  
Chengzhuang Lu ◽  
Ruiyun Zhang ◽  
Hao Li ◽  
Jian Cheng ◽  
Shisen Xu ◽  
...  

Abstract High-temperature fuel cells are a power technology that can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide. The present work explores the performance of the 10kW high-temperature molten carbonate fuel cell (MCFC). The key materials of the molten carbonate fuel cell single cell were characterized and analyzed by X-ray diffraction(XRD) and scanning electron microscope (SEM). The results show that the pore size of key electrode material was 6.5 μm and the matrix material is α-LiAlO 2 .The open circuit voltage of the single cell is 1.23 V in experiment. The current density is greater than 100 mA / cm^2 when the operating voltage is 0.7 V. The 10 kW fuel cell stack was constitutive of 80 pieces single fuel cells with area of 2000 cm 2 . The open circuit voltage of the stack reaches above 85 V. The fuel cell stack power and current density can reach 11.7 kW and 104.5 mA/cm^2 when the operating voltage is 56 V. The influence and long-term stable operation of the stack were also analyzed and discussed. The successful operation of 10kW high temperature fuel cell promotes the scale of domestic fuel cell and provides the research basis of fuel cell capacity enhancement and distributed generation in the next step.


2020 ◽  
Author(s):  
Chengzhuang Lu ◽  
Ruiyun Zhang ◽  
Hao Li ◽  
Jian Cheng ◽  
Shisen Xu ◽  
...  

Abstract High-temperature fuel cells are a power technology that can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide. The present work explores the performance of the 10kW high-temperature molten carbonate fuel cell (MCFC). The key materials of the molten carbonate fuel cell single cell were characterized and analyzed by X-ray diffraction(XRD) and scanning electron microscope (SEM). The results show that the pore size of key electrode material was 6.5 μm and the matrix material is α-LiAlO2.The open circuit voltage of the single cell is 1.23 V in experiment. The current density is greater than 100 mA / cm^2 when the operating voltage is 0.7 V. The 10 kW fuel cell stack was constitutive of 80 pieces single fuel cells with area of 2000 cm2. The open circuit voltage of the stack reaches above 85 V. The fuel cell stack power and current density can reach 11.7 kW and 104.5 mA/cm^2 when the operating voltage is 56 V. The influence and long-term stable operation of the stack were also analyzed and discussed. The successful operation of 10kW high temperature fuel cell promotes the scale of domestic fuel cell and provides the research basis of fuel cell capacity enhancement and distributed generation in the next step.


2020 ◽  
Author(s):  
Chengzhuang Lu ◽  
Ruiyun Zhang ◽  
Hao Li ◽  
Jian Cheng ◽  
Shisen Xu ◽  
...  

Abstract The test of 10 kW high-temperature molten carbonate fuel cell of the carbon dioxide near-zero emission technology project was carried out. The key materials of the molten carbonate fuel cell single cell were characterized and analyzed by XRD and SEM. The results show that the pore size of key electrode material was 6.5 µm and the matrix material is α-LiAlO2.The open circuit voltage of the single cell is 1.23V in experiment. The current density is greater than 100 mA / cm2 when the operating voltage is 0.7V. The 10 kW fuel cell stack was constitutive of 80 pieces single fuel cells with area of 2000 cm2. The open circuit voltage of the stack reaches above 85V. The fuel cell stack power and current density can reach 11.7 kW and 104.5 mA/cm2 when the operating voltage is 56V. The influence and long-term stable operation of the stack were also analyzed and discussed.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Arkadiusz Szczęśniak ◽  
Jarosław Milewski ◽  
Łukasz Szabłowski ◽  
Olaf Dybiński ◽  
Kamil Futyma

Abstract Molten carbonate fuel cells (MCFCs) offer several advantages that are attracting an increasingly intense research and development effort. Recent advances include improved materials and fabrication techniques as well as new designs, flow configurations, and applications. Several factors are holding back large-scale implementation of fuel cells, though, especially in distributed energy generation, a major one being their long response time to changing parameters. Alternative mathematical models of the molten carbonate fuel cell stack have been developed over the last decade. This study investigates a generic molten carbonate fuel cell stack with a nominal power output of 1 kWel. As daily, weekly, and monthly variations in the electrical power load are expected, there is a need to develop numerical tools to predict the unit’s performance with high accuracy. Hence, a fully physical dynamic model of an MCFC stack was developed and implemented in aspen hysys 10 modeling software to enable a predictive analysis of the dynamic response. The presented model exhibits high accuracy and accounts for thermal and electrochemical processes and parameters. The authors present a numerical analysis of an MCFC stack in emergency scenarios. Further functionality of the model, which was validated using real operational data, is discussed.


2013 ◽  
Vol 346 ◽  
pp. 23-28
Author(s):  
Jarosław Milewski ◽  
Wojciech Bujalski ◽  
Marcin Wołowicz ◽  
Kamil Futyma ◽  
Jan Kucowski ◽  
...  

This work considers electronic conductance in a molten carbonate fuel cell and consequences of its existence. The voltage characteristics of cells show differences between a theoretical maximum circuit voltage and open circuit voltage (OCV). A relationship is assumed between the OCV value and electronic conductance. Based on experimental measurements an appropriate mathematical model was created. The model is used to calculate the temperature dependence of electronic conductance for the most popular types of electrolyte: Li2CO3/K2CO3. The results obtained point to the possible existence of a very close relationship between electronic conductance and open circuit voltage. This relationship enables OCV to be calculated when electronic conductance is known. Appropriate formulae can be determined. Temperature is one of the factors affecting electronic conductance. Other influencing factors do exist, but their impact on OCV is not well known. This article mentions some of them.


2005 ◽  
Vol 3 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Petar Varbanov ◽  
Jiří Klemeš ◽  
Ramesh K. Shah ◽  
Harmanjeet Shihn

A new view is presented on the concept of the combined cycle for power generation. Traditionally, the term “combined cycle” is associated with using a gas turbine in combination with steam turbines to better utilize the exergy potential of the burnt fuel. This concept can be broadened, however, to the utilization of any power-generating facility in combination with steam turbines, as long as this facility also provides a high-temperature waste heat. Such facilities are high temperature fuel cells. Fuel cells are especially advantageous for combined cycle applications since they feature a remarkably high efficiency—reaching an order of 45–50% and even close to 60%, compared to 30–35% for most gas turbines. The literature sources on combining fuel cells with gas and steam turbines clearly illustrate the potential to achieve high power and co-generation efficiencies. In the presented work, the extension to the concept of combined cycle is considered on the example of a molten carbonate fuel cell (MCFC) working under stationary conditions. An overview of the process for the MCFC is given, followed by the options for heat integration utilizing the waste heat for steam generation. The complete fuel cell combined cycle (FCCC) system is then analyzed to estimate the potential power cost levels that could be achieved. The results demonstrate that a properly designed FCCC system is capable of reaching significantly higher efficiency compared to the standalone fuel cell system. An important observation is that FCCC systems may result in economically competitive power production units, comparable with contemporary fossil power stations.


Sign in / Sign up

Export Citation Format

Share Document