On Global Feasible Search for Global Design Optimization With Application to Generalized Polynomial Models

Author(s):  
Chihsiung Lo ◽  
Panos Y. Papalambros

Abstract A powerful idea for deterministic global optimization is the use of global feasible search, namely, algorithms that guarantee finding feasible solutions of nonconvex problems or prove that none exists. In this article, a set of conditions for global feasible search algorithms is established. The utility of these conditions is demonstrated on two algorithms that solve special problem classes globally. Also, a new model transformation is shown to convert a generalized polynomial problem into one of the special classes above. A flywheel design example illustrates the approach. A sequel article provides further computational details and design examples.

1995 ◽  
Vol 117 (3) ◽  
pp. 402-408 ◽  
Author(s):  
Chihsiung Lo ◽  
P. Y. Papalambros

A key idea for deterministic global optimization is the use of global feasible search, namely, algorithms that guarantee finding feasible solutions of nonconvex problems or prove that none exists. In this article, a set of conditions for global feasible search algorithms is established. The utility of these conditions is demonstrated on two algorithms that solve special problem classes globally. Also, a new model transformation is shown to convert a generalized polynomial problem into one of the special classes above. A flywheel design example illustrates the approach. A sequel article provides further computational details and design examples.


Author(s):  
Chihsiung Lo ◽  
Panos Y. Papalambros

Abstract A new design optimization method is described for finding global solutions of models with a nonconvex objective function and nonlinear constraints. All functions are assumed to be generalized polynomials. By introducing new variables, the original model is transformed into one with a linear objective function, one convex and one reversed convex constraint. A two-phase algorithm that includes global feasible searches and local optimal searches is used for globally optimizing the transformed model. Several examples illustrate the method.


1996 ◽  
Vol 118 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Chihsiung Lo ◽  
P. Y. Papalambros

A new design optimization method is described for finding global solutions of models with a nonconvex objective function and nonlinear constraints. All functions are assumed to be generalized polynomials. By introducing new variables, the original model is transformed into one with a linear objective function, one convex and one reversed convex constraint. A two-phase algorithm that includes global feasible search and local optimal search is used for globally optimizing the transformed model. Several examples illustrate the method.


Sign in / Sign up

Export Citation Format

Share Document