bilevel programming
Recently Published Documents


TOTAL DOCUMENTS

604
(FIVE YEARS 79)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Vol 7 (4) ◽  
pp. 5534-5562
Author(s):  
B. El-Sobky ◽  
◽  
G. Ashry

<abstract><p>In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem.</p> <p>A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach.</p></abstract>


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Peng Liu ◽  
Caiyun Liu ◽  
Xiaoling Wei

In the shared manufacturing environment, on the basis of in-depth analysis of the shared manufacturing process and the allocation process of manufacturing resources, a bilevel programming model for the optimal allocation of manufacturing resources considering the benefits of the shared manufacturing platform and the rights of consumers is established. In the bilevel programming model, the flexible indicators representing the interests of the platform are the upper-level optimization target of the model and the Quality of Service (QoS) indicators representing the interests of consumers are the lower-level optimization goal. The weights of the upper indicators are determined by Analytic Hierarchy Process (AHP) and Improved Order Relation Analysis (Improved G1) combination weighting method and the bilevel programming model is solved by the Improved Fast Elitist Non-Dominated Sorting Genetic Algorithm (Improved NSGA-II). Finally, the effectiveness of the model is validated by a numerical example.


Author(s):  
AKHILESH KUMAR ◽  
Anjana Gupta ◽  
Aparna Mehra

In this paper, a decision-support is developed for a strategic problem of identifying target prices for the single buyer to negotiate with multiple suppliers to achieve common goal of maintaining sustained business environment. For this purpose, oligopolistic-competitive equilibrium prices of suppliers are suggested to be considered as target prices. The problem of identifying these prices is modeled as a multi-leader-single-follower bilevel programming problem involving linear constraints and bilinear objective functions. Herein, the multiple suppliers are considered leaders competing in a Nash game to maximize individual profits, and the buyer is a follower responding with demand-order allocations to minimize the total procurement-cost. Profit of each supplier is formulated on assessing respective operational cost to fulfill demand-orders by integrating aggregate-production-distribution-planning mechanism into the problem. A genetic-algorithm-based technique is designed in general for solving large-scale instances of the variant of bilevel programming problems with multiple leaders and single follower, and the same is applied to solve the modeled problem. The developed decision support is appropriately demonstrated on the data of a leading FMCG manufacturing firm, which manufactures goods through multiple sourcing.


Author(s):  
Kaike Zhang ◽  
Xueping Li ◽  
Mingzhou Jin

This study generalizes the r-interdiction median (RIM) problem with fortification to simultaneously consider two types of risks: probabilistic exogenous disruptions and endogenous disruptions caused by intentional attacks. We develop a bilevel programming model that includes a lower-level interdiction problem and a higher-level fortification problem to hedge against such risks. We then prove that the interdiction problem is supermodular and subsequently adopt the cuts associated with supermodularity to develop an efficient cutting-plane algorithm to achieve exact solutions. For the fortification problem, we adopt the logic-based Benders decomposition (LBBD) framework to take advantage of the two-level structure and the property that a facility should not be fortified if it is not attacked at the lower level. Numerical experiments show that the cutting-plane algorithm is more efficient than benchmark methods in the literature, especially when the problem size grows. Specifically, with regard to the solution quality, LBBD outperforms the greedy algorithm in the literature with an up-to 13.2% improvement in the total cost, and it is as good as or better than the tree-search implicit enumeration method. Summary of Contribution: This paper studies an r-interdiction median problem with fortification (RIMF) in a supply chain network that simultaneously considers two types of disruption risks: random disruptions that occur probabilistically and disruptions caused by intentional attacks. The problem is to determine the allocation of limited facility fortification resources to an existing network. It is modeled as a bilevel programming model combining a defender’s problem and an attacker’s problem, which generalizes the r-interdiction median problem with probabilistic fortification. This paper is suitable for IJOC in mainly two aspects: (1) The lower-level attacker’s interdiction problem is a challenging high-degree nonlinear model. In the literature, only a total enumeration method has been applied to solve a special case of this problem. By exploring the special structural property of the problem, namely, the supermodularity of the transportation cost function, we developed an exact cutting-plane method to solve the problem to its optimality. Extensive numerical studies were conducted. Hence, this paper fits in the intersection of operations research and computing. (2) We developed an efficient logic-based Benders decomposition algorithm to solve the higher-level defender’s fortification problem. Overall, this study generalizes several important problems in the literature, such as RIM, RIMF, and RIMF with probabilistic fortification (RIMF-p).


Author(s):  
Stefano Coniglio ◽  
Stefano Gualandi

In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k-rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is [Formula: see text]-hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.


2021 ◽  
Vol 54 ◽  
Author(s):  
Bhawna Kohli

In this paper, a multiobjective fractional bilevel programming problem is considered and optimality conditions using the concept of convexifactors are established for it. For this purpose, a suitable constraint qualification in terms of convexifactors is introduced for the problem. Further in the paper, notions of asymptotic pseudoconvexity, asymptotic quasiconvexity in terms of convexifactors are given and using them sufficient optimality conditions are derived.


2021 ◽  
Author(s):  
Gulesin Sena Das ◽  
Murat Yesilkaya ◽  
Busra Altinkaynak ◽  
Burak Birgoren

Author(s):  
Mohsine Jennane ◽  
El Mostafa Kalmoun ◽  
Lhoussain El Fadil

In combining the value function approach and tangential subdifferentials, we establish  necessary optimality conditions of  a nonsmooth multiobjective bilevel programming problem under a suitable constraint qualification. The upper level objectives and constraint functions are neither assumed to be necessarily locally Lipschitz nor convex.


Sign in / Sign up

Export Citation Format

Share Document