Surrogate Modeling of Complex Systems Using Adaptive Hybrid Functions

Author(s):  
Jie Zhang ◽  
Souma Chowdhury ◽  
Achille Messac ◽  
Junqiang Zhang ◽  
Luciano Castillo

This paper explores the effectiveness of the recently developed surrogate modeling method, the Adaptive Hybrid Functions (AHF), through its application to complex engineered systems design. The AHF is a hybrid surrogate modeling method that seeks to exploit the advantages of each component surrogate. In this paper, the AHF integrates three component surrogate models: (i) the Radial Basis Functions (RBF), (ii) the Extended Radial Basis Functions (E-RBF), and (iii) the Kriging model, by characterizing and evaluating the local measure of accuracy of each model. The AHF is applied to model complex engineering systems and an economic system, namely: (i) wind farm design; (ii) product family design (for universal electric motors); (iii) three-pane window design; and (iv) onshore wind farm cost estimation. We use three differing sampling techniques to investigate their influence on the quality of the resulting surrogates. These sampling techniques are (i) Latin Hypercube Sampling (LHS), (ii) Sobol’s quasirandom sequence, and (iii) Hammersley Sequence Sampling (HSS). Cross-validation is used to evaluate the accuracy of the resulting surrogate models. As expected, the accuracy of the surrogate model was found to improve with increase in the sample size. We also observed that, the Sobol’s and the LHS sampling techniques performed better in the case of high-dimensional problems, whereas the HSS sampling technique performed better in the case of low-dimensional problems. Overall, the AHF method was observed to provide acceptable-to-high accuracy in representing complex design systems.

2017 ◽  
Vol 56 (5) ◽  
pp. 1061-1075 ◽  
Author(s):  
Cédric Durantin ◽  
Justin Rouxel ◽  
Jean-Antoine Désidéri ◽  
Alain Glière

Author(s):  
Kaveh Amouzgar ◽  
Niclas Stromberg

In this paper, an approach to generate surrogate models constructed by radial basis function networks (RBFN) with a priori bias is presented. RBFN as a weighted combination of radial basis functions only, might become singular and no interpolation is found. The standard approach to avoid this is to add a polynomial bias, where the bias is defined by imposing orthogonality conditions between the weights of the radial basis functions and the polynomial basis functions. Here, in the proposed a priori approach, the regression coefficients of the polynomial bias are simply calculated by using the normal equation without any need of the extra orthogonality prerequisite. In addition to the simplicity of this approach, the method has also proven to predict the actual functions more accurately compared to the RBFN with a posteriori bias. Several test functions, including Rosenbrock, Branin-Hoo, Goldstein-Price functions and two mathematical functions (one large scale), are used to evaluate the performance of the proposed method by conducting a comparison study and error analysis between the RBFN with a priori and a posteriori known biases. Furthermore, the aforementioned approaches are applied to an engineering design problem, that is modeling of the material properties of a three phase spherical graphite iron (SGI). The corresponding surrogate models are presented and compared.


Author(s):  
Jie Zhang ◽  
Souma Chowdhury ◽  
Achille Messac ◽  
Luciano Castillo ◽  
Jose Lebron

This paper develops a cost model for onshore wind farms in the U.S.. This model is then used to analyze the influence of different designs and economic parameters on the cost of a wind farm. A response surface based cost model is developed using Extended Radial Basis Functions (E-RBF). The E-RBF approach, a combination of radial and non-radial basis functions, can provide the designer with significant flexibility and freedom in the metamodeling process. The E-RBF based cost model is composed of three parts that can estimate (i) the installation cost, (ii) the annual Operation and Maintenance (O&M) cost, and (iii) the total annual cost of a wind farm. The input parameters for the E-RBF based cost model include the rotor diameter of a wind turbine, the number of wind turbines in a wind farm, the construction labor cost, the management labor cost and the technician labor cost. The accuracy of the model is favorably explored through comparison with pertinent real world data. It is found that the cost of a wind farm is appreciably sensitive to the rotor diameter and the number of wind turbines for a given desirable total power output.


Sign in / Sign up

Export Citation Format

Share Document