normal equation
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 49)

H-INDEX

6
(FIVE YEARS 2)

Geophysics ◽  
2022 ◽  
pp. 1-130
Author(s):  
Zheng Wu ◽  
Yuzhu Liu ◽  
Jizhong Yang

The migration of prismatic reflections can be used to delineate steeply dipping structures, which is crucial for oil and gas exploration and production. Elastic least-squares reverse time migration (ELSRTM), which considers the effects of elastic wave propagation, can be used to obtain reasonable subsurface reflectivity estimations and interpret multicomponent seismic data. In most cases, we can only obtain a smooth migration model. Thus, conventional ELSRTM, which is based on the first-order Born approximation, considers only primary reflections and cannot resolve steeply dipping structures. To address this issue, we develop an ELSRTM framework, called Pris-ELSRTM, which can jointly image primary and prismatic reflections in multicomponent seismic data. When Pris-ELSRTM is directly applied to multicomponent records, near-vertical structures can be resolved. However, the application of imaging conditions established for prismatic reflections to primary reflections destabilizes the process and leads to severe contamination of the results. Therefore, we further improve the Pris-ELSRTM framework by separating prismatic reflections from recorded multicomponent data. By removing artificial imaging conditions from the normal equation, primary and prismatic reflections can be imaged based on unique imaging conditions. The results of synthetic tests and field data applications demonstrate that the improved Pris-ELSRTM framework produces high-quality images of steeply dipping P- and S-wave velocity structures. However, it is difficult to delineate steep density structures because of the insensitivity of the density to prismatic reflections.


2021 ◽  
Vol 112 (1) ◽  
pp. 19-25
Author(s):  
Roman Kadaj

Abstract In adjusted geodetic networks, cases of local configuration defects (defects in the geometric structure of the network due to missing data or errors in point numbering) can be encountered, which lead to the singularity of the normal equation system in the least-squares procedure. Numbering errors in observation sets cause the computer program to define the network geometry incorrectly. Another cause of a defect may be accidental omission of certain data records, causing local indeterminacy or lowering of local reliability rates in a network. Obviously, the problem of a configuration defect may be easily detectable in networks with a small number of points. However, it becomes a real problem in large networks, where manual checking of all data becomes a very expensive task. The paper presents a new strategy for the detection of configuration defects with the use of the Tikhonov regularization method. The method was implemented in 1992 in the GEONET system (www.geonet.net.pl).


2021 ◽  
Vol 11 (4) ◽  
pp. 287-306
Author(s):  
Jarosław Bilski ◽  
Bartosz Kowalczyk ◽  
Andrzej Marjański ◽  
Michał Gandor ◽  
Jacek Zurada

Abstract In this paper1 a new neural networks training algorithm is presented. The algorithm originates from the Recursive Least Squares (RLS) method commonly used in adaptive filtering. It uses the QR decomposition in conjunction with the Givens rotations for solving a normal equation - resulting from minimization of the loss function. An important parameter in neural networks is training time. Many commonly used algorithms require a big number of iterations in order to achieve a satisfactory outcome while other algorithms are effective only for small neural networks. The proposed solution is characterized by a very short convergence time compared to the well-known backpropagation method and its variants. The paper contains a complete mathematical derivation of the proposed algorithm. There are presented extensive simulation results using various benchmarks including function approximation, classification, encoder, and parity problems. Obtained results show the advantages of the featured algorithm which outperforms commonly used recent state-of-the-art neural networks training algorithms, including the Adam optimizer and the Nesterov’s accelerated gradient.


Geophysics ◽  
2021 ◽  
pp. 1-57
Author(s):  
Ali Gholami ◽  
Hossein S. Aghamiry ◽  
Stéphane Operto

The search space of Full Waveform Inversion (FWI) can be extended via a relaxation of the wave equation to increase the linear regime of the inversion. This wave equation relaxation is implemented by solving jointly (in a least-squares sense) the wave equation weighted by a penalty parameter and the observation equation such that the reconstructed wavefields closely match the data, hence preventing cycle skipping at receivers. Then, the subsurface parameters are updated by minimizing the temporal and spatial source extension generated by the wave-equation relaxation to push back the data-assimilated wavefields toward the physics.This extended formulation of FWI has been efficiently implemented in the frequency domain with the augmented Lagrangian method where the overdetermined systems of the data-assimilated wavefields can be solved separately for each frequency with linear algebra methods and the sensitivity of the optimization to the penalty parameter is mitigated through the action of the Lagrange multipliers.Applying this method in the time domain is however hampered by two main issues: the computation of data-assimilated wavefields with explicit time-stepping schemes and the storage of the Lagrange multipliers capturing the history of the source residuals in the state space.These two issues are solved by recognizing that the source residuals on the right-hand side of the extended wave equation, when formulated in a form suitable for explicit time stepping, are related to the extended data residuals through an adjoint equation.This relationship first allows us to relate the extended data residuals to the reduced data residuals through a normal equation in the data space. Once the extended data residuals have been estimated by solving (exactly or approximately) this normal equation, the data-assimilated wavefields are computed with explicit time stepping schemes by cascading an adjoint and a forward simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhi Wang ◽  
Sinan Fang

The electromagnetic wave signal from the electromagnetic field source generates induction signals after reaching the target geological body through the underground medium. The time and spatial distribution rules of the artificial or the natural electromagnetic fields are obtained for the exploration of mineral resources of the subsurface and determining the geological structure of the subsurface to solve the geological problems. The goal of electromagnetic data processing is to suppress the noise and improve the signal-to-noise ratio and the inversion of resistivity data. Inversion has always been the focus of research in the field of electromagnetic methods. In this paper, the three-dimensional borehole-surface resistivity method is explored based on the principle of geometric sounding, and the three-dimensional inversion algorithm of the borehole-surface resistivity method in arbitrary surface topography is proposed. The forward simulation and calculation start from the partial differential equation and the boundary conditions of the total potential of the three-dimensional point current source field are satisfied. Then the unstructured tetrahedral grids are used to discretely subdivide the calculation area that can well fit the complex structure of subsurface and undulating surface topography. The accuracy of the numerical solution is low due to the rapid attenuation of the electric field at the point current source and the nearby positions and sharply varying potential gradients. Therefore, the mesh density is defined at the local area, that is, the vicinity of the source electrode and the measuring electrode. The mesh refinement can effectively reduce the influence of the source point and its vicinity and improve the accuracy of the numerical solution. The stiffness matrix is stored with Compressed Row Storage (CSR) format, and the final large linear equations are solved using the Super Symmetric Over Relaxation Preconditioned Conjugate Gradient (SSOR-PCG) method. The quasi-Newton method with limited memory (L_BFGS) is used to optimize the objective function in the inversion calculation, and a double-loop recursive method is used to solve the normal equation obtained at each iteration in order to avoid computing and storing the sensitivity matrix explicitly and reduce the amount of calculation. The comprehensive application of the above methods makes the 3D inversion algorithm efficient, accurate, and stable. The three-dimensional inversion test is performed on the synthetic data of multiple theoretical geoelectric models with topography (a single anomaly model under valley and a single anomaly model under mountain) to verify the effectiveness of the proposed algorithm.


2021 ◽  
pp. 1-19
Author(s):  
Lei Shi ◽  
Gangrong Qu

BACKGROUND: The limited-angle reconstruction problem is of both theoretical and practical importance. Due to the severe ill-posedness of the problem, it is very challenging to get a valid reconstructed result from the known small limited-angle projection data. The theoretical ill-posedness leads the normal equation A T Ax = A T b of the linear system derived by discretizing the Radon transform to be severely ill-posed, which is quantified as the large condition number of A T A. OBJECTIVE: To develop and test a new valid algorithm for improving the limited-angle image reconstruction with the known appropriately small angle range from [ 0 , π 3 ] ∼ [ 0 , π 2 ] . METHODS: We propose a reweighted method of improving the condition number of A T Ax = A T b and the corresponding preconditioned Landweber iteration scheme. The weight means multiplying A T Ax = A T b by a matrix related to A T A, and the weighting process is repeated multiple times. In the experiment, the condition number of the coefficient matrix in the reweighted linear system decreases monotonically to 1 as the weighting times approaches infinity. RESULTS: The numerical experiments showed that the proposed algorithm is significantly superior to other iterative algorithms (Landweber, Cimmino, NWL-a and AEDS) and can reconstruct a valid image from the known appropriately small angle range. CONCLUSIONS: The proposed algorithm is effective for the limited-angle reconstruction problem with the known appropriately small angle range.


2021 ◽  
Vol 13 (17) ◽  
pp. 3464
Author(s):  
Chunhua Jiang ◽  
Tianhe Xu ◽  
Wenfeng Nie ◽  
Zhenlong Fang ◽  
Shuaimin Wang ◽  
...  

Global Navigation Satellite System (GNSS) ultra-rapid orbit is critical for geoscience and real-time engineering applications. To improve the computational efficiency and the accuracy of predicted orbit, a parallel approach for multi-GNSS ultra-rapid orbit determination is proposed based on Message Passing Interface (MPI)/Open Multi Processing (OpenMP). This approach, compared with earlier efficient methods, can improve the efficiency of multi-GNSS ultra-rapid orbit solution without changing the original observation data and retaining the continuity and consistency of the original parameters to be estimated. To obtain high efficiency, three steps are involved in the approach. First and foremost, the normal equation construction is optimized in parallel based on MPI. Second, equivalent reduction of the estimated parameters is optimized using OpenMP parallel method. Third, multithreading is used for parallel orbit extrapolation. Thus, GNSS ultra-rapid orbit determination is comprehensively optimized in parallel, and the computation efficiency is greatly improved. Based on the data from MGEX and IGS stations, experiments are carried out to analyze the performance of the proposed approach in computational efficiency, accuracy and stability. The results show that the approach greatly improves the efficiency of satellite orbit determination. It can realize 1-h update frequency for the multi-GNSS ultra-rapid orbit determination using 88 stations with four-system observations. The accuracy of the GPS, GLONASS, Galileo and BDS ultra-rapid orbit with 1-h update frequency using the parallel approach is approximately 33.4%,31.4%,40.1% and 32.8% higher than that of the original orbit, respectively. The root mean squares (RMS) of GPS, GLONASS, Galileo and BDS predicted orbit are about 3.2 cm, 5.1 cm, 5.6 cm and 11.8 cm. Moreover, the orbit provided by the proposed method has a better stability. The precision loss of all parallel optimization can be negligible and the original correlation between the parameters is fully preserved.


2021 ◽  
Vol 87 (9) ◽  
pp. 661-668
Author(s):  
Guoqing Zhou ◽  
Man Yuan ◽  
Xiaozhu Li ◽  
Hongjun Sha ◽  
Jiasheng Xu ◽  
...  

Rational polynomial coefficients in a rational function model (<small>RFM</small>) have high correlation and redundancy, especially in high-order <small>RFMs</small>, which results in ill-posed problems of the normal equation. For this reason, this article presents an optimal regularization method with the L-curve for solving rational polynomial coefficients. This method estimates the rational polynomial coefficients of an <small>RFM</small> using the L-curve and finds the optimal regularization parameter with the minimum mean square error, then solves the parameters of the <small>RFM</small> by the Tikhonov method based on the optimal regularization parameter. The proposed method is validated in both terrain-dependent and terrain-independent cases using Gaofen-1 and aerial images, respectively, and compared with the least-squares method, L-curve method, and generalized cross-validation method. The experimental results demonstrate that the proposed method can solve the <small> RFM</small> parameters effectively, and their accuracy is increased by more than 85% on average relative to the other methods.


Author(s):  
F. Menna ◽  
E. Nocerino ◽  
B. Chemisky ◽  
F. Remondino ◽  
P. Drap

Abstract. Photogrammetry needs known geometric elements to provide metric traceable measurements. These known elements can be a distance between two three-dimensional object points or two camera stations, or a combination of known coordinates and/or angles to solve the seven degrees of freedom that lead to rank deficiency of the normal-equation matrix. In this paper we present a novel approach for scaling and levelling to the local vertical direction an underwater photogrammetric survey. The developed methodology is based on a portable low-cost device designed and realized by the authors that uses depth measurements from a high resolution pressure sensor. The prototype consists of a data logger featuring a pressure sensor synchronized with a digital camera in its underwater pressure housing. The modular design, with optical communication and synchronization, provides great flexibility not requiring the camera housing to undergo any hardware modifications. The proposed methodology allows for a full 3D levelling transformation comprising two angles, a vertical translation and a scale factor and can work for surveying scenes extending horizontally, vertically or both. The paper presents the theoretical principles, an overview of the developed system together with preliminary calibration results. Tests in a lake and at sea are reported. An accuracy better than 1:5000 on the length measurement was achieved in calm water conditions.


Author(s):  
Vikas Dwivedi ◽  
Balaji Srinivasan

Abstract This paper develops an extreme learning machine for solving linear partial differential equations (PDE) by extending the normal equations approach for linear regression. The normal equations method is typically used when the amount of available data is small. In PDEs, the only available ground truths are the boundary and initial conditions (BC and IC). We use the physics-based cost function used in state-of-the-art deep neural network-based PDE solvers called physics informed neural network (PINN) to compensate for the small data. However, unlike PINN, we derive the normal equations for PDEs and directly solve them to compute the network parameters. We demonstrate our method's feasibility and efficiency by solving several problems like function approximation, solving ordinary differential equations (ODEs), steady and unsteady PDEs on regular and complicated geometries. We also highlight our method's limitation in capturing sharp gradients and propose its domain distributed version to overcome this issue. We show that this approach is much faster than traditional gradient descent-based approaches and offers an alternative to conventional numerical methods in solving PDEs in complicated geometries.


Sign in / Sign up

Export Citation Format

Share Document