Constrained Model Predictive Control of a Continuous Annealing Furnace

Author(s):  
L. Bitschnau ◽  
S. Jakubek ◽  
M. Kozek

For the design of constrained model predictive control of a continuous annealing furnace both the modeling of an industrial furnace and the structure of an appropriate constrained predictive control scheme are presented. The model of the furnace comprises a partitioning of the furnace into suitable heating zones, a description of the spatially discretized moving steel strip, and a dynamic formulation of the heaters. The final process model is of linear state space form and utilizes the energy flow to the heaters as inputs, the ambient temperatures as disturbances, and the temperatures of the strip elements and the heaters as states. The model can be easily adapted to varying operation conditions since all important design parameters of the furnace and the strip can be modified on-line. Utilizing measurement data from an industrial furnace for the model validation shows excellent agreement. The constrained predictive control scheme explicitly considers the disturbance, allows for the inclusion of reference values for the inputs, and simultaneously guarantees constraints on the maximum temperature of the heaters. This structure is shown in simulations to reliably obey multiple and contradictory technological restrictions of the process without the need for lengthy parameter optimizations.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Lihui Cen ◽  
Ziqiang Wu ◽  
Xiaofang Chen ◽  
Yanggui Zou ◽  
Shaohui Zhang

This paper proposes a model predictive control of open irrigation canals with constraints. The Saint-Venant equations are widely used in hydraulics to model an open canal. As a set of hyperbolic partial differential equations, they are not solved explicitly and difficult to design optimal control algorithms. In this work, a prediction model of an open canal is developed by discretizing the Saint-Venant equations in both space and time. Based on the prediction model, a constrained model predictive control was firstly investigated for the case of one single-pool canal and then generalized to the case of a cascaded canal with multipools. The hydraulic software SICC was used to simulate the canal and test the algorithms with application to a real-world irrigation canal of Yehe irrigation area located in Hebei province.


Automatica ◽  
2000 ◽  
Vol 36 (6) ◽  
pp. 789-814 ◽  
Author(s):  
D.Q. Mayne ◽  
J.B. Rawlings ◽  
C.V. Rao ◽  
P.O.M. Scokaert

Sign in / Sign up

Export Citation Format

Share Document