A Hybrid Electro-Thermal Energy Storage System for High Ramp Rate Power Applications

Author(s):  
Cary E. Laird ◽  
Andrew G. Alleyne

Abstract The practice of hybridizing energy storage systems is vital to high ramp rate power applications, in which energy storage systems are constrained by strict power and energy requirements. Hybrid energy storage is typically studied in the electrical and thermal domains separately, but due to the inherent link between electrical and thermal energy domains, it is necessary to examine hybrid energy storage in both domains simultaneously. In this paper, a combined electro-thermal energy storage system is modeled and simulated. Equivalent circuit and lumped-parameter models are used to facilitate control design. PI controllers are designed for both the electrical and thermal domains to demonstrate the ability to perform multi-domain energy management.

2015 ◽  
Author(s):  
Reza Baghaei Lakeh ◽  
Yetlanezi B. Guerrero ◽  
Karthik Nithyanandam ◽  
Richard E. Wirz

Most of the renewable energy sources, including solar and wind suffer from significant intermittency due to day/night cycles and unpredictable weather patterns. Energy Storage systems are required to enable the renewable energy sources to continuously generate energy for the power grid. Thermal Energy Storage (TES) is one of the most promising forms of energy storage due to simplicity and economic reasons. However, heat transfer is a well-known problem of most TES systems that utilize solid state or phase change. Insufficient heat transfer impairs the functionality of the system by imposing an upper limit on the power generation. Isochoric thermal energy storage system is suggested as a low-cost alternative for salt-based thermal energy storage systems. The isochoric thermal energy storage systems utilize a liquid storage medium and benefit from enhanced heat transfer due to the presence of buoyancy-driven flows. In this study, the effect of buoyancy-driven flows on the heat transfer characteristics of an Isochoric Thermal Energy Storage system is studied computationally. The storage fluid is molten elemental sulfur which has promising cost benefits. For this study, the storage fluid is stored in horizontal storage tubes. A computational model was developed to study the effect of buoyancy-driven flow and natural convection heat transfer on the charge/discharge times. The computational model is developed using an unsteady Finite Volume Method to model the transient heat transfer from the constant-temperature tube wall to the storage fluid. The results of this study show that the heat transfer process in Isochoric thermal energy storage system is dominated by natural convection and the buoyancy-driven flow reduces the charge time of the storage tube by 72–93%.


Sign in / Sign up

Export Citation Format

Share Document