energy storage technology
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 106)

H-INDEX

20
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 458
Author(s):  
Tse-Wei Chen ◽  
Ganesan Anushya ◽  
Shen-Ming Chen ◽  
Palraj Kalimuthu ◽  
Vinitha Mariyappan ◽  
...  

Metal-air batteries and fuel cells are considered the most promising highly efficient energy storage systems because they possess long life cycles, high carbon monoxide (CO) tolerance, and low fuel crossover ability. The use of energy storage technology in the transport segment holds great promise for producing green and clean energy with lesser greenhouse gas (GHG) emissions. In recent years, nanoscale based electrocatalysts have shown remarkable electrocatalytic performance towards the construction of sustainable energy-related devices/applications, including fuel cells, metal-air battery and water-splitting processes. This review summarises the recent advancement in the development of nanoscale-based electrocatalysts and their energy-related electrocatalytic applications. Further, we focus on different synthetic approaches employed to fabricate the nanomaterial catalysts and also their size, shape and morphological related electrocatalytic performances. Following this, we discuss the catalytic reaction mechanism of the electrochemical energy generation process, which provides close insight to develop a more efficient catalyst. Moreover, we outline the future perspectives and challenges pertaining to the development of highly efficient nanoscale-based electrocatalysts for green energy storage technology.


Author(s):  
Dhrubajyoti Bhattacharjya ◽  
Maria Arnaiz ◽  
Maria Canal Rodriguez ◽  
Silvia Martin ◽  
Tandra Panja ◽  
...  

Abstract Due to the dual advantage of capacitive and faradaic charge storage mechanisms, Li-ion capacitors (LICs) are regarded as promising energy storage technology for many high-power applications. However, the high cost and intricacy of indispensable pre-lithiation step in LIC fabrication are the major stumbling block against its widespread commercial interest. In this regard, operando pre-lithiation through incorporating lithium-containing sacrificial salt in the positive electrode holds high potential to solve this issue. Herein, we present an industrially compatible fabrication method based on a solution-processable positive electrode consisting of an activated carbon mixed with a low-cost, air-stable dilithium squarate as sacrificial salt. Through careful optimization of electrode design, laboratory-scale cells are up-scaled to pouch cell prototypes. Fabricated LIC pouch cells deliver high specific energy (i.e. max. 58 Wh kg-1AM) and power (i.e. max. 8190 W kg-1AM) with respect to active electrode mass. Moreover, cycle life and floating tests performed at room temperature show capacitance retention of 83 % after 80000 charge-discharge cycles and 100 % retention after 1000 floating hours at 3.8 V. However, the accelerated aging tests at 70 ºC induce fast device failure. Post-mortem analyses reveal different ageing mechanisms for cycled and floated LIC pouch cells.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032067
Author(s):  
Qiang Fu ◽  
Chengxi Fu ◽  
Peng Fu ◽  
Yuke Deng

Abstract Energy storage is one of the main problems bothering the power system. The present research situation of energy storage is outlined. The working principles, development process and technical features of pumped storage, compressed air energy storage, flywheel energy storage, electromagnetic energy storage and chemical energy storage are described in detail. The application prospect of energy storage is proposed.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012004
Author(s):  
Wanyu Lu ◽  
Zijie Wang ◽  
Shuhang Zhong

Abstract The development of electric vehicles has made massive progress in recent years, and the battery part has been receiving constant attention. Although lithium-ion battery is a powerful energy storage technology contemporarily with great convenience in the field of electric vehicles and portable/stationary storage, the scantiness and increasing price of lithium have raised significant concerns about the battery’s developments; an alternative technology is needed to replace the expensive lithium-ion batteries at use. Therefore, the sodium-ion batteries (SIBs) were brought back to life. Sharing a similar mechanism as the lithium-ion batteries makes SIBs easier to understand and more effective in the research. In recent years, the developed materials for anode and cathode in the SIB have extensively promoted its advancements in increasing the energy density, power rate, and cyclability; multiple types of electrolytes, either in the form of aqueous, solid, or ions, offers safety and stability. Still, to rival the lithium-ion batteries, the SIB needs much more work to improve its performance, further expanding its application. Overall, the SIB has tremendous potential to be the future leading battery technology because of its abundance.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012104
Author(s):  
D López-Pedrajas ◽  
M Jiménez-Vázquez ◽  
A M Borreguero ◽  
F J Ramos ◽  
I Garrido ◽  
...  

Abstract Gypsums with improved thermal properties have been obtained using a thermoregulatory nanocapsulated slurry (NPCS) as additive. In order to determine the effects of the slurries in the gypsum, physical, mechanical and thermal properties of the different composite materials (gypsum – polystyrene nanoparticles (PS) or nanocapsules (NPCM)) have been studied. Concentrated slurries from polystyrene nanoparticles without (PSS) and with encapsulated phase change material (NPCS) have been synthesized. Firstly, gypsum blocks made of nanoparticles/hemihydrate with mass ratios ranging from 0.0 to 0.42 have been produced from PSS, in order to determine the optimal weight ratio with the best mechanical/physical characteristics. Then, the thermal gypsum block from NPCM/hemihydrate has been prepared at the selected weight ratio. Although PS and NPCM addition reduces the mechanical properties, all the developed materials satisfied the mechanical European regulation EN 13279-2 which limits the mechanical characteristics of gypsums composites. The gypsum composites with PS nanoparticles presented a reduction of the thermal conductivity, so these materials can be used as insulating material. The gypsum composite with NPCM/Hem = 0.3 had an improvement in the thermal storage capacity of 88.76 % and seems to be a good alternative for applying the thermal energy storage technology in buildings.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6592
Author(s):  
Xiaotong Qie ◽  
Rui Zhang ◽  
Yanyong Hu ◽  
Xialing Sun ◽  
Xue Chen

Energy storage technologies can reduce grid fluctuations through peak shaving and valley filling and effectively solve the problems of renewable energy storage and consumption. The application of energy storage technologies is aimed at storing energy and supplying energy when needed according to the storage requirements. The existing research focuses on ranking technologies and selecting the best technologies, while ignoring storage requirements. Here, we propose a multi-criteria decision-making (MCDM) framework for selecting a suitable technology based on certain storage requirements. Specifically, we consider nine criteria in four aspects: technological, economic, environmental, and social. The interval number, crisp number, and linguist terms can be transformed into a probabilistic dual hesitant fuzzy set (PDHFS) through the transformation and fusion method we proposed, and a suitable technology can be selected through distance measurements. Subsequently, the proposed method is applied in a representative case study for energy storage technology selection in Shanxi Province, and a sensitivity analysis gives different scenarios for elaboration. The results show that the optimal selection of energy storage technology is different under different storage requirement scenarios. The decision-making model presented herein is considered to be versatile and adjustable, and thus, it can help decision makers to select a suitable energy storage technology based on the requirements of any given use case.


2021 ◽  
Vol 10 (4) ◽  
pp. 94-101
Author(s):  
Apriwandi Apriwandi ◽  
Erman Taer ◽  
Rakhmawati Farma

Abstrak. Teknologi penyimpan energi elektrokimia yang ramah lingkungan merupakan aspek yang penting dalam menunjang kinerja sistem konversi energi terbarukan. Studi ini menyiapkan elektroda superkapasitor berbahan asal karbon aktif berpori limbah daun pisang kepok. Sampel dipreparasi melalui impregnasi Natrium hidroksida pada konsentrasi 0,5 m/L dan dipirolisis satu tahap meliputi karbonisasi dan aktivasi fisika. Serbuk karbon yang dihasilkan dikonversi dalam bentuk pellet atau monolit dengan menggunakan hidraulik press tanpa adanya penambahan bahan perekat. Proses karbonisasi dilakukan dari suhu kamar hingga 600 °C pada lingkungan gas N2 sedangkan proses aktivasi fisika dilakukan dari suhu 600 °C hingga pada suhu tinggi dengan tiga jenis suhu yang berbeda meliputi 700 °C, 800 °C, dan 900 °C pada lingkungan gas CO2. Analisis densitas ditinjau sebagai evaluasi awal elektroda karbon berpori. Lebih lanjut, sifat elektrokimia superkapasitor dievaluasi melalui dua teknik yang berbeda meliputi teknik cyclic voltammetry (CV) dan galanostatic charge discharge (GCD) pada sistem dua elektroda dalam elektrolit 1 M H2SO4. Kapasitansi spesifik pada teknik CV adalah sebesar 142 F/g sedangkan dengan teknik GCD menghasilkan kapsitansi spesifik sebesar 154 F/g pada resistansi 42∙10-3Ω. Rapat daya dan rapat energi yang dihasilkan berturut-turut 20,45 Wh/kg dan 38,32 W/kg. Hasil ini mengkonfirmasi bahwa daun pisang berpotensi dijadikan sebagai karbon aktif berpori untuk material dasar elektroda superkapasitor.Abstract. Environmentally friendly electrochemical energy storage technology is an important aspect of supporting global energy fulfillment as a contribution to improving the performance of renewable energy conversion systems. Currently, supercapacitors are considered as a superior electrochemical energy storage technology compared to others. This study performed a supercapacitor with electrodes made from porous activated carbon based on biomass waste, especially banana leaf waste. The sample was prepared by sodium hydroxide impregnated at a concentration of 0.5 m/L dan one-step pyrolysis both carbonization dan physical activation. The carbon powder is converted into pellets or monoliths using a hydraulic press without the addition of any adhesive materials. The carbonization process is performed from room temperature to 600 °C in an N2 gas environment while the physical activation process is carried out from a temperature of 600 °C to a high temperature with three different types including 700 °C, 800 °C, dan 800 °C in CO2 gas atmosphere. Density analysis is reviewed as an initial evaluation of the porous carbon electrode. Furthermore, the electrochemical properties of the supercapacitor were evaluated through two different techniques including cyclic voltammetry (CV) dan galvanostatic charge-discharge (GCD) in a two-electrode system in 1 M H2SO4 electrolyte. The specific capacitance in the CV technique is 142 F/g while the GCD technique produces a specific capacitance of 154 F/g at resistance of 42∙10-3 Ω. The power density dan energy densities for the K-900 are 20.45 Wh/kg dan 38.32 W/kg, respectively. These results confirmed that banana leaves have the potential to be used as porous activated carbon for the supercapacitor electrode.


Sign in / Sign up

Export Citation Format

Share Document