Lattice Boltzmann Simulation of Nucleation

Author(s):  
Takeshi Seta ◽  
Kenichi Okui ◽  
Eisyun Takegoshi

We propose a lattice Boltzmann model capable of simulating nucleation. This LBM modifies a pseudo-potential so that it recovers a full set of hydrodynamic equations for two-phase flows based on the van der Waals-Cahn-Hilliard free energy theory through the Chapman-Enskog expansion procedure. Numerical measurements of thermal conductivity and of surface tension agree well with theoretical predictions. Simulations of phase transition, nucleation, pool boiling are carried out. They demonstrate that the model is applicable to two-phase flows with thermal effects. Using finite difference Lattice Boltzmann method ensures numerical stability of the scheme.

2017 ◽  
Vol 28 (09) ◽  
pp. 1750120 ◽  
Author(s):  
Yong Peng ◽  
Yun Fei Mao ◽  
Bo Wang ◽  
Bo Xie

Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P–R) and Carnahan and Starling (C–S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P–R and C–S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P–R and C–S EOS agree with the analytical solutions although P–R EOS may perform better. The prediction of liquid phase by P–R EOS is more accurate than that of air phase and the contrary is true for C–S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting [Formula: see text]. The P–R EOS can achieve larger maximum density ratio than C–S EOS under the same [Formula: see text]. Besides, no matter the C–S EOS or the P–R EOS, if [Formula: see text] tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P–R is larger than that of C–S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.


Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


2002 ◽  
Vol 68 (672) ◽  
pp. 2186-2194 ◽  
Author(s):  
Takeshi SETA ◽  
Ryoichi TAKAHASHI ◽  
Kenichi OKUI ◽  
Eisyun TAKEGOSHI

2018 ◽  
Vol 97 (3) ◽  
Author(s):  
Yan Ba ◽  
Ningning Wang ◽  
Haihu Liu ◽  
Qiang Li ◽  
Guoqiang He

Sign in / Sign up

Export Citation Format

Share Document