bubble collapse
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 93)

H-INDEX

38
(FIVE YEARS 4)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Hao Pang ◽  
Gracious Ngaile

The cavitation peening (CP) and cavitation abrasive jet polishing (CAJP) processes employ a cavitating jet to harden the surface or remove surface irregularities. However, a zero incidence angle between the jet and the surface limits the efficiency of these two processes. This limitation can be improved by introducing a secondary jet. The secondary jet interacts with the main jet, carrying bubbles to the proximity of the workpiece surface and aligning the disordered bubble collapse events. Through characterizing the treated surface of AL6061 in terms of the hardness distribution and surface roughness, it was found out that the secondary jet can increase the hardening intensity by 10%, whereas the material removal rate within a localized region increased by 66%. In addition, employing multiple secondary jets can create a patched pattern of hardness distribution. Another finding is that the hardening effect of the cavitation increases with the processing time at first and is then saturated.


Author(s):  
Yurong Sun ◽  
Yuxin Du ◽  
Zhifeng Yao ◽  
Qiang Zhong ◽  
Siyuan Geng ◽  
...  

Abstract The objective of this paper is to reveal the influence of different surface geometric conditions on the dynamic behavior characteristics of a laser-induced bubble collapse. A high-speed camera system was used to record the oscillation process of the laser-induced bubble on plane solid walls with different roughness and a wall containing reentrant cavities full of water or gas. The focus is on the quantitative analysis of the morphological characteristics of the cavitation bubble near the solid wall under different surface forms during the first two oscillation period. The results show that the dimensionless ratio γ, defined as the distance from the center of the bubble to the wall divided by the maximum radius of the bubble, has a great influence on the change of the cavitation shape in the direction of the vertical wall. Different surface geometries without gas in our cases have no significant effect on the collapse time of cavitation bubbles. While for the surface containing gas, the direction of movement of the bubble accompanying the micro-jet will greatly change during the collapse of the cavitation bubble, and the collapse time seems to be independent of the dimensionless ratio γ. These achievements shed the light for the engineering to avoid the damage of the micro-jet caused by design suitable surface geometry.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Wang ◽  
Ting-Qiang Xie

Purpose Cavitation erosion has always been a common technical problem in a hydraulic discharging structure. This paper aims to investigate the cavitation erosion behavior of hydraulic concrete under high-speed flow. Design/methodology/approach A high-speed and high-pressure venturi cavitation erosion generator was used to simulate the strong cavitation. The characteristics of hydrodynamic loads of cavitation bubble collapse zone, the failure characteristics and the erosion development process of concrete were investigated. The main influencing factors of cavitation erosion were discussed. Findings The collapse of the cavitation bubble group produced a high frequency, continuous and unsteady pulse load on the wall of concrete, which was more likely to cause fatigue failure of concrete materials. The cavitation action position and the main frequency of impact load were greatly affected by the downstream pressure. A power exponential relationship between cavitation load, cavitation erosion and flow speed was observed. With the increase of concrete strength, the degree of damage of cavitation erosion was approximately linearly reduced. Originality/value After cavitation erosion, a skeleton structure was formed by the accumulation of granular particles, and the relatively independent bulk structure of the surface differed from the flake structure formed after abrasion.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1518
Author(s):  
Zhicheng Xu ◽  
Xiaojian Ma ◽  
Qidong Yu ◽  
Jing Zhao ◽  
Dapeng Wang ◽  
...  

In order to resist bubble loading, anisotropic composite materials are the development direction of the future. The objective of this paper was to experimentally investigate the hydrodynamic performance of anisotropic laminate composite plates, with a focus on the effect of its anisotropic characteristics on single bubble migration. In these experiments, the bubble was generated in a transparent water tank filled with sufficiently degassed water by Joule heating at the connecting point of the electrodes through the discharge of a 6600 μF charge to 800 V, and a high-speed camera system with a recording speed of 40,000 frames per second was used to record the temporal evolution of bubble patterns and the dynamic responses of the laminated composite plates. The results are presented for two anisotropic cantilever composite beams with different ply angles, namely, 0° and 30°. Several variables, such as the shapes of the bubble, the curved trail of motion of the bubble center, bubble collapse time, and bubble initial standoff distances were extracted from the photographic images. The results showed that bubble migration near the 30° plate presents a curved bubble trail with an evident tilted angle during the collapse and rebound stages, which is very different from bubbles that all move vertically above the 0° plate. Furthermore, a characterization method for bubble migration was proposed to quantitatively describe the curved bubble trails and the deformation of the composite beams in temporal and spatial scales. This method shows that the curved bubble trails near the 30° plate are closely related to the dynamic response of composite beams, with a focus on the bending-twisting coupling effect.


2021 ◽  
pp. 118377
Author(s):  
Wei Xu ◽  
Rongsheng Zhu ◽  
Qiang Fu ◽  
Xiuli Wang ◽  
Yuanyuan Zhao ◽  
...  

2021 ◽  
Vol 33 (11) ◽  
pp. 112102
Author(s):  
Ehsan Mahravan ◽  
Daegyoum Kim

2021 ◽  
Vol 33 (11) ◽  
pp. 113318
Author(s):  
Eric Goncalves da Silva ◽  
Philippe Parnaudeau

2021 ◽  
Vol 106 ◽  
pp. 103370
Author(s):  
Prasanta Sarkar ◽  
Giovanni Ghigliotti ◽  
Jean-Pierre Franc ◽  
Marc Fivel

2021 ◽  
Vol 106 ◽  
pp. 103372
Author(s):  
Tihao Zhao ◽  
Xin Zhao ◽  
Xiaojian Ma ◽  
Biao Huang

Sign in / Sign up

Export Citation Format

Share Document