The Influence of Electroosmotic Flow on the Von Kármán Vortex Street in the Wake of a Cylinder Located in a Microchannel

Author(s):  
Mathias Scholz ◽  
Dominik P. J. Barz

The von Kármán vortex street is a flow instability that is observed in the wake of a blunt body if a certain (cylinder) Reynolds number is exceeded. It is one of the classical problems in fluid mechanics and a vast amount of research has been dedicated to the investigation of the fundamentals of this phenomenon. The present study is concerned with the numerical simulation of the flow in a microchannel having a cylinder located in its channel center. A pressure driven flow is induced in the channel described by the channel Reynolds number. The cylinder is subjected to an externally-applied electric field that causes electroosmosis in the electrical double layer which is present around the cylinder surface. In this setup, two distinctions to the classical von Kármán vortex street can be noted. On the one hand, the presence of the microchannel walls confines the flow field in lateral direction. On the other hand, the electroosmotic slip velocity impacts the flow topology in the vicinity of the cylinder and, thus, may have an impact on the formation and the periodic nature of the von Kármán vortex street. Various numerical simulations are performed to investigate the influence of the cylinder-diameter-to-channel-width ratio and the direction of the electrical field.

2012 ◽  
Vol 699 ◽  
pp. 174-197 ◽  
Author(s):  
Patrice Meunier

AbstractThis experimental and numerical study considers the two-dimensional stability of a circular cylinder wake, whose axis is tilted with respect to a stable density gradient. When the Reynolds number increases, the wake transitions from a steady flow to a periodic von Kármán vortex street as in a homogeneous fluid. However, the presence of a moderate stratification delays the appearance of the von Kármán vortex street, in agreement with the stabilization of shear flows by a density gradient. This stabilization, which does not occur for a vertical cylinder, increases with the tilt angle of the cylinder and is maximum for a horizontal cylinder. The critical Reynolds number increases when the stratification increases and diverges at a Froude number of order one for a horizontal cylinder. This critical Reynolds number can be predicted using the Richardson number based on the projection of the gravity and the density gradient in the direction of the shear, as was proposed by Candelier (J. Fluid Mech., vol. 685, pp. 191–201) for a tilted stratified jet. This picture is completely different for a strongly stratified wake since a new unstable mode appears, creating a von Kármán vortex street with a smaller Strouhal number. This surprising result is due to the presence of tilted vortices with no vertical velocity, i.e. with horizontal elliptic streamlines. This mode occurs in a band of Froude numbers which becomes smaller and smaller when the tilt angle increases, and eventually disappears for a horizontal cylinder. The presence of the tilt has thus a large impact on the structure of the wake at small Froude numbers and might need to be taken into account in geophysical flows.


2012 ◽  
Vol 108 (26) ◽  
Author(s):  
Marie-Jean Thoraval ◽  
Kohsei Takehara ◽  
Takeharu Goji Etoh ◽  
Stéphane Popinet ◽  
Pascal Ray ◽  
...  

1993 ◽  
Vol 5 (7) ◽  
pp. 1846-1848 ◽  
Author(s):  
Michael König ◽  
Bernd R. Noack ◽  
Helmut Eckelmann

Sign in / Sign up

Export Citation Format

Share Document