Comparative Study on Stress Intensity Factors for Surface Cracks in Welded Joint and Flat Plate by Using the Influence Function Method

Author(s):  
Phyo Myat Kyaw ◽  
Osawa Naoki ◽  
Gadallah Ramy ◽  
Tanaka Satoyuki

Abstract Welding is an effective method for joining metallic structures which are very common in the construction of ships and offshore platforms. However, welded joints are prone to fatigue failure under cyclic loading due to the associated high residual stresses. In order to assess the fatigue crack propagation (FCP) accurately, precise evaluation of stress intensity factors (SIFs) is a key parameter. The residual stress distribution on the crack face of welded joints is usually non-uniform and also depends on boundary conditions. Therefore, an efficient technique is required to calculate SIFs for welded joints under non-uniform stress distribution. In this study, SIFs of semi-circular surface cracked welded joints are calculated by using the influence function method (IFM). The IFM has been introduced as an efficient method to evaluate SIFs under arbitrary stress distribution. The influence coefficient databases (ICDB) are developed for welded joints and flat plate models using IFM in this study. As the crack face traction (CFT) integral is employed in this developed influence coefficients (IC), the SIFs given by IFM are more accurate compared to the previously established solutions without CFT-integral. The ICDB and SIFs evaluated by using welded joint and flat plate models are compared and discussed. This study reveals the difference between ICDB of flat plates and welded joints, and estimation error of calculated SIFs for welded joints by using flat plate ICDB.

Sign in / Sign up

Export Citation Format

Share Document