Improving Plant Operations With Performance and Condition Monitoring Systems

Author(s):  
Jonathan Hicks ◽  
Donald Kerber

Business operations in the power industry, as with every other industry, require payback for the resolution of process problems. In order to achieve this payback many plant monitoring systems are used such as Performance and Condition Monitoring Systems. Performance Monitoring systems use first principles calculations for a baseline and test performance case, both of these calculations can then be reconciled to give a cost associated with off design operation. Condition Monitoring systems operate on the Advanced Pattern Recognition Algorithm (APR) and can be used to identify slight variations in the performance of a system largely independent of the quality of the inputs. The process to identify deviations is as follows: a predicted value is calculated for every modeled parameter, a difference between the predicted value and actual value is calculated, the difference is compared to an allowed threshold, and then problems are reported. The purpose of the following report is to identify the strengths and weaknesses of each monitoring system and show how they may be used together for a more thorough analysis of off design operation. Performance monitoring systems provide a reliable and actionable assessment of Heat Rate deviations when they occur in the field. The calculations provided by these systems can lead directly to the diagnosis of real performance problems as well as instrument inaccuracies and provide the financial implications of each issue. Performance monitoring systems, however, are highly dependent upon input quality as their results are found using first principles calculations. Condition Monitoring systems can be used to identify smaller deviations from normal at an earlier time. The major strength of the APR process is its ability to identify these deviations regardless of input quality. As with Performance Monitoring Systems the APR process will identify real problems as well as instrument problems. However, it will not provide a financially quantifiable result as to the effect of the deviation. Monitoring systems should be able to provide quantifiable results with minimal personnel use in order to achieve a payback for more operational problems. This paper will discuss how the use of Performance Monitoring Systems in conjunction with Condition Monitoring Systems will provide the complete analysis needed by the power industry today.

Author(s):  
Bogdan Leu ◽  
Bogdan-Adrian Enache ◽  
Florin-Ciprian Argatu ◽  
Marilena Stanculescu

2014 ◽  
Vol 971-973 ◽  
pp. 1045-1050
Author(s):  
Wen Xing Sun ◽  
Zhao Hui Li ◽  
Shi Jie Cheng

Many successful applications for the online monitoring of the insulation condition for electric power transformers have been reported over last thirty years. However, false or unsolved alarms have been quite frequently generated by those condition monitoring systems. Failures and some occasionally catastrophic accidents involving transformers have still occurred. A highly reliable insulation condition online monitoring and real-time alarm system has been developed, to help resolve these problems. An electric power transformer has strongly linked mechanical, electrical, magnetic, chemical and thermal characteristics, and is also directly linked to circuit breakers and generators. Team Intelligence (TI) was employed to integrate all the monitoring modules of the various different aspects of the transformer into one unique system. This system could also be integrate with the condition monitoring systems of various linked facilities, such as the monitoring systems of the turbine and the generator in a Optimal Maintenance Information System for Hydropower Plant (HOMIS). Highly reliable monitoring and real-time alarms of transformer insulation condition could be achieved, due to highly coordinated and rapid response features. This system has been deployed in several hydropower plants. The industrial application examples are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document