scholarly journals Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

2017 ◽  
Vol 22 (6) ◽  
pp. 066013 ◽  
Author(s):  
David Wei Wei ◽  
Anthony J. Deegan ◽  
Ruikang K. Wang
Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 808
Author(s):  
Max Philipp Brinkmann ◽  
Nikolas Xavier Kibele ◽  
Michelle Prasuhn ◽  
Vinodh Kakkassery ◽  
Mario Damiano Toro ◽  
...  

Optical coherence tomography angiography (OCTA) is a non-invasive tool for imaging and quantifying the retinal and choroidal perfusion state in vivo. This study aimed to evaluate the acute effects of isometric and dynamic exercise on retinal and choroidal sublayer perfusion using OCTA. A pilot study was conducted on young, healthy participants, each of whom performed a specific isometric exercise on the first day and a dynamic exercise the day after. At baseline and immediately after the exercise, heart rate (HR), mean arterial pressure (MAP), superficial capillary plexus perfusion (SCPP), deep capillary plexus perfusion (DCPP), choriocapillaris perfusion (CCP), Sattlers’s layer perfusion (SLP), and Haller’s layer perfusion (HLP) were recorded. A total of 34 eyes of 34 subjects with a mean age of 32.35 ± 7.87 years were included. HR as well as MAP increased significantly after both types of exercise. Both SCPP and DCPP did not show any significant alteration due to isometric or dynamic exercise. After performing dynamic exercise, CCP, SLP, as well as HLP significantly increased. Changes in MAP correlated significantly with changes in HLP after the dynamic activity. OCTA-based analysis in healthy adults following physical activity demonstrated a constant retinal perfusion, supporting the theory of autoregulatory mechanisms. Dynamic exercise, as opposed to isometric activity, significantly changed choroidal perfusion. OCTA imaging may represent a novel and sensitive tool to expand the diagnostic spectrum in the field of sports medicine.


2017 ◽  
Author(s):  
En Li ◽  
Shuichi Makita ◽  
Young-Joo Hong ◽  
Deepa Kasaragod ◽  
Yoshiaki Yasuno

Author(s):  
Eugenia Custo Greig ◽  
Jay S. Duker ◽  
Nadia K. Waheed

Abstract Background Optical coherence tomography angiography (OCTA) can image the retinal vasculature in vivo, without the need for contrast dye. This technology has been commercially available since 2014, however, much of its use has been limited to the research setting. Over time, more clinical practices have adopted OCTA imaging. While countless publications detail OCTA’s use for the study of retinal microvasculature, few studies outline OCTA’s clinical utility. Body This review provides an overview of OCTA imaging and details tips for successful interpretation. The review begins with a summary of OCTA technology and artifacts that arise from image acquisition. New methods and best practices to prevent image artifacts are discussed. OCTA has the unique ability among retinovascular imaging modalities to individually visualize each retinal plexus. Slabs offered in standard OCTA devices are reviewed, and clinical uses for each slab are outlined. Lastly, the use of OCTA for the clinical interpretation of retinal pathology, such as diabetic retinopathy and age-related macular degeneration, is discussed. Conclusion OCTA is evolving from a scientific tool to a clinical imaging device. This review provides a toolkit for successful image interpretation in a clinical setting.


2000 ◽  
Vol 25 (18) ◽  
pp. 1355 ◽  
Author(s):  
Christopher E. Saxer ◽  
Johannes F. de Boer ◽  
B. Hyle Park ◽  
Yonghua Zhao ◽  
Zhongping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document