ex vivo
Recently Published Documents


TOTAL DOCUMENTS

32468
(FIVE YEARS 15043)

H-INDEX

192
(FIVE YEARS 54)

2023 ◽  
Vol 83 ◽  
Author(s):  
A. P. Sousa ◽  
D. A. Fernandes ◽  
M. D. L. Ferreira ◽  
L. V. Cordeiro ◽  
M. F. V. Souza ◽  
...  

Abstract Tiliroside is a glycosidic flavonoid present in many plants species including Helicteres velutina K. Schum (Malvaceae sensu lato), commonly known in Brazil as “pitó”. This molecule has been shown to have many biological activities, however no study has been carried out to investigate the toxicity of this substance. The present work aimed to evaluate the possible cellular toxicity in silico, in vitro and ex-vivo of the kaempferol-3-O-β-D-(6”-E-p-coumaroyl) glucopyranoside (tiliroside), through chemical structure analysis, toxicity assessment and predictive bioactive properties, using human samples for in vitro and ex-vivo tests. The in silico analysis suggests that tiliroside exhibited great absorption index when penetrating biological membranes. In addition, it also displayed considerable potential for cellular protection against free radicals, and anticarcinogenic, antioxidant, antineoplastic, anti-inflammatory, anti-hemorrhagic and antithrombotic activities. The assessment of the hemolytic and genotoxic effects of tiliroside showed low hemolysis rates in red blood cells and absence of cellular toxicity in the oral mucosa cells. The data obtained indicate that this molecule could be a promising therapeutic approach as a possible new drug with biotechnological potential.


2022 ◽  
Vol 270 ◽  
pp. 151-161
Author(s):  
Laura C. Burlage ◽  
Alexandre G. Lellouch ◽  
Corentin B. Taveau ◽  
Philipp Tratnig-Frankl ◽  
Casie A. Pendexter ◽  
...  
Keyword(s):  
Ex Vivo ◽  

2022 ◽  
Vol 521 ◽  
pp. 230972
Author(s):  
Mohammad Zhiani ◽  
Saeid Barzi ◽  
Ali Ahmadi ◽  
Francesco Vizza ◽  
Hussein Gharibi ◽  
...  

Author(s):  
Abigail M. Forson ◽  
Colin W. K. Rosman ◽  
Theo G. van Kooten ◽  
Henny C. van der Mei ◽  
Jelmer Sjollema

Advancements in contemporary medicine have led to an increasing life expectancy which has broadened the application of biomaterial implants. As each implant procedure has an innate risk of infection, the number of biomaterial-associated infections keeps rising. Staphylococcus aureus causes 34% of such infections and is known as a potent biofilm producer. By secreting micrococcal nuclease S. aureus is able to escape neutrophil extracellular traps by cleaving their DNA-backbone. Also, micrococcal nuclease potentially limits biofilm growth and adhesion by cleaving extracellular DNA, an important constituent of biofilms. This study aimed to evaluate the impact of micrococcal nuclease on infection persistence and biofilm formation in a murine biomaterial-associated infection-model with polyvinylidene-fluoride mesh implants inoculated with bioluminescent S. aureus or its isogenic micrococcal nuclease deficient mutant. Supported by results based on in-vivo bioluminescence imaging, ex-vivo colony forming unit counts, and histological analysis it was found that production of micrococcal nuclease enables S. aureus bacteria to evade the immune response around an implant resulting in a persistent infection. As a novel finding, histological analysis provided clear indications that the production of micrococcal nuclease stimulates S. aureus to form biofilms, the presence of which extended neutrophil extracellular trap formation up to 13 days after mesh implantation. Since micrococcal nuclease production appeared vital for the persistence of S. aureus biomaterial-associated infection, targeting its production could be a novel strategy in preventing biomaterial-associated infection.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Anil Vishnu G. K. ◽  
Gayatri Gogoi ◽  
Bhagaban Behera ◽  
Saeed Rila ◽  
Annapoorni Rangarajan ◽  
...  

AbstractThe rapid and label-free diagnosis of malignancies in ex vivo breast biopsy tissues has significant utility in pathology laboratories and operating rooms. We report a MEMS-based platform integrated with microchips that performs phenotyping of breast biopsy tissues using electrothermal sensing. The microchip, fabricated on a silicon substrate, incorporates a platinum microheater, interdigitated electrodes (IDEs), and resistance temperature detectors (RTDs) as on-chip sensing elements. The microchips are integrated onto the platform using a slide-fit contact enabling quick replacement for biological measurements. The bulk resistivity (ρB), surface resistivity (ρS), and thermal conductivity (k) of deparaffinized and formalin-fixed paired tumor and adjacent normal breast biopsy samples from N = 8 patients were measured. For formalin-fixed samples, the mean ρB for tumors showed a statistically significant fold change of 4.42 (P = 0.014) when the tissue was heated from 25 °C to 37 °C compared to the adjacent normal tissue, which showed a fold change of 3.47. The mean ρS measurements also showed a similar trend. The mean k of the formalin-fixed tumor tissues was 0.309 ± 0.02 W m−1 K−1 compared to a significantly higher k of 0.563 ± 0.028 W m−1 K−1 for the adjacent normal tissues. A similar trend was observed in ρB,ρS, and k for the deparaffinized tissue samples. An analysis of a combination of ρB, ρS, and k using Fisher’s combined probability test and linear regression suggests the advantage of using all three parameters simultaneously for distinguishing tumors from adjacent normal tissues with higher statistical significance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Tammam Abboud ◽  
Dorothee Mielke ◽  
Veit Rohde

Impedance measurement of human tissue can be performed either in vivo or ex vivo. The majority of the in-vivo approaches are non-invasive, and few are invasive. To date, there is no gold standard for impedance measurement of intracranial tissue. In addition, most of the techniques addressing this topic are still experimental and have not found their way into clinical practice. This review covers available impedance measurement approaches in the neuroscience in general and specifically addresses recent advances made in the application of impedance measurement in the field of surgical neurooncology. It will provide an understandable picture on impedance measurement and give an overview of limitations that currently hinders clinical application and require future technical and conceptual solutions.


2022 ◽  
Vol 12 (2) ◽  
pp. 891
Author(s):  
Roberto De Santis ◽  
Flavia Iaculli ◽  
Vincenzo Lodato ◽  
Vito Gallicchio ◽  
Michele Simeone ◽  
...  

Background: Enhancement of the temperature of sodium hypochlorite (NaOCl) solution would increase its cleaning potential and decontamination of the root canal system. Therefore, the aim of the present in vitro investigation was to compare the efficacy of different methods of NaOCl heating by evaluating the temperature profiles developed at different levels of the root canal system. Methods: Five thermocouples were applied at different levels of the root canal system of extracted human premolars. NaOCl solution was heated according to two methods: extraoral heating (50 °C, 60 °C, and 70 °C) using a magnetic hotplate heater and intracanal heating by F-06, XF-30/04, and ML-12 pluggers at 100 °C, 150 °C, and 180 °C. Results: The extraoral heating method was ineffective to produce a significant temperature increase at the root apex. Comparable results were obtained using the intracanal heating method through the ML-12 plugger that showed slightly better results only when set at 180 °C. On the other hand, negligible differences were observed in terms of temperature maintenance at several levels of the root between the F-06 and XF-30/04 pluggers, even though the time intervals were higher in case of XF-30/04. Conclusions: The intracanal heating method provided a better temperature persistence in the middle third of the root canal system. Conversely, extraoral heating was ineffective to produce a significant temperature increase at the apex of the root. Comparable results were obtained even using the ML-12 plugger.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 205
Author(s):  
Linh Dinh ◽  
Soohun Lee ◽  
Sharif Md Abuzar ◽  
Heejun Park ◽  
Sung-Joo Hwang

Donepezil (DPZ) is generally administered orally to treat Alzheimer’s disease (AD). However, oral administration can cause gastrointestinal side effects. Therefore, to enhance compliance, a new way to deliver DPZ from transdermal patch was developed. Ionic bonds were created by dissolving dicarboxylic acid and DPZ in ethanol, resulting in a stable ionic liquid (IL) state. The synthesized ILs were characterized by differential scanning calorimetry, optical microscope, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The DPZ ILs were then transformed to a suitable drug-in-adhesive patch for transdermal delivery of DPZ. The novel DPZ ILs patch inhibits crystallization of the IL, indicating coherent design. Moreover, DPZ ILs and DPZ IL patch formulations performed excellent skin permeability compared to that of the DPZ free-base patch in both in vitro and ex vivo skin permeability studies.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 166
Author(s):  
Elisabetta Marini ◽  
Marta Giorgis ◽  
Marta Leporati ◽  
Barbara Rolando ◽  
Konstantin Chegaev ◽  
...  

Chronic use of glyceryl trinitrate (GTN) is limited by serious side effects, such as tolerance and endothelial dysfunction of coronary and resistance arteries. Although GTN is used as a drug since more than 130 years, the mechanisms of the vasodilatory effects and of tolerance development to organic nitrates are still incompletely elucidated. New synthesized organic nitrates with and without antioxidant properties were characterized for their ex vivo tolerance profile, in order to investigate the oxidative stress hypothesis of nitrate tolerance. The organic nitrates studied showed different vasodilation and tolerance profiles, probably due to the ability or inability of the compounds to interact with the aldehyde dehydrogenase-2 enzyme (ALDH-2) involved in bioactivation. Furthermore, nitrooxy derivatives endowed with antioxidant properties did not determine the onset of tolerance, even if bioactivated by ALDH-2. The results of this study could be further evidence of the involvement of ALDH-2 in the development of nitrate tolerance. Moreover, the behavior of organic nitrates with antioxidant properties supports the hypothesis of the involvement of ROS in inactivating ALDH-2.


Sign in / Sign up

Export Citation Format

Share Document