An empirical radar backscatter model at co-polarized and cross-polarized x-band under high‐wind conditions

2021 ◽  
Author(s):  
Yuliya Troitskaya ◽  
Victor Abramov ◽  
Georgy Baydakov ◽  
Olga Ermakova ◽  
Daniil Sergeev ◽  
...  
Keyword(s):  
2013 ◽  
Vol 30 (9) ◽  
pp. 2168-2188 ◽  
Author(s):  
Paul A. Hwang ◽  
Derek M. Burrage ◽  
David W. Wang ◽  
Joel C. Wesson

Abstract Ocean surface roughness plays an important role in air–sea interaction and ocean remote sensing. Its primary contribution is from surface waves much shorter than the energetic wave components near the peak of the wave energy spectrum. Field measurements of short-scale waves are scarce. In contrast, microwave remote sensing has produced a large volume of data useful for short-wave investigation. Particularly, Bragg resonance is the primary mechanism of radar backscatter from the ocean surface and the radar serves as a spectrometer of short surface waves. The roughness spectra inverted from radar backscatter measurements expand the short-wave database to high wind conditions in which in situ sensors do not function well. Using scatterometer geophysical model functions for L-, C-, and Ku-band microwave frequencies, the inverted roughness spectra, covering Bragg resonance wavelengths from 0.012 to 0.20 m, show a convergent trend in high winds. This convergent trend is incorporated in the surface roughness spectrum model to improve the applicable wind speed range for microwave scattering and emission computations.


2016 ◽  
Vol 182 ◽  
pp. 169-191 ◽  
Author(s):  
Sofia Antonova ◽  
Andreas Kääb ◽  
Birgit Heim ◽  
Moritz Langer ◽  
Julia Boike

Author(s):  
Helmut Rott ◽  
Thomas Nagler ◽  
Karl Voglmeier ◽  
Michael Kern ◽  
Giovanni Macelloni ◽  
...  
Keyword(s):  
X Band ◽  

Sign in / Sign up

Export Citation Format

Share Document