ocean surface
Recently Published Documents


TOTAL DOCUMENTS

2579
(FIVE YEARS 441)

H-INDEX

92
(FIVE YEARS 9)

Author(s):  
Seth F. Zippel ◽  
J. Thomas Farrar ◽  
Christopher J. Zappa ◽  
Albert J. Plueddemann

2022 ◽  
Author(s):  
Wan-Ling Tseng ◽  
Huang-Hsiung Hsu ◽  
Yung-Yao Lan ◽  
Chia-Ying Tu ◽  
Pei-Hsuan Kuo ◽  
...  

Abstract. A one-column turbulent kinetic energy–type ocean mixed-layer model Snow–Ice–Thermocline (SIT) when coupled with three atmospheric general circulation models (AGCMs) to yielded superior Madden–Julian Oscillation (MJO) simulation. SIT is designed to have fine layers similar to those observed near the ocean surface and therefore can realistically simulate the diurnal warm layer and cool skin. This refined discretization of the near ocean surface in SIT provides accurate sea surface temperature (SST) simulation, thus facilitating realistic air–sea interaction. Coupling SIT with European Centre Hamburg Model, Version 5 (ECHAM5); Community Atmosphere Model, Version 5 (CAM5); and High Resolution Atmospheric Model (HiRAM) significantly improved MJO simulation in three coupled AGCMs compared with the AGCM driven with prescribed SST. This study suggests two major improvements to the coupling process. First, during the preconditioning phase of MJO over Maritime Continent (MC), the over underestimated surface latent heat bias in AGCMs can be corrected. Second, during the phase of strongest convection over MC, the change of the intraseasonal circulation in the meridional circulation is the dominant factor in the coupled simulations relative to the uncoupled experiments. The study results indicate that a fine vertical resolution near the surface, which better captures temperature variations in the upper few meters of the ocean, considerably improves different models with different configurations and physical parameterization schemes; this could be an essential factor for accurate MJO simulation.


2022 ◽  
Author(s):  
Hu Yang ◽  
Jian Lu ◽  
Qiang Wang ◽  
Xiaoxu Shi ◽  
Gerrit Lohmann

AbstractGrowing evidence indicates that the atmospheric and oceanic circulation experiences a systematic poleward shift in a warming climate. However, the complexity of the climate system, including the coupling between the ocean and the atmosphere, natural climate variability and land-sea distribution, tends to obfuscate the causal mechanism underlying the circulation shift. Here, using an idealised coupled aqua-planet model, we explore the mechanism of the shifting circulation, by isolating the contributing factors from the direct CO$$_2$$ 2 forcing, the indirect ocean surface warming, and the wind-stress feedback from the ocean dynamics. We find that, in contrast to the direct CO$$_2$$ 2 forcing, ocean surface warming, in particular an enhanced subtropical ocean warming, plays an important role in driving the circulation shift. This enhanced subtropical ocean warming emerges from the background Ekman convergence of surface anomalous heat in the absence of the ocean dynamical change. It expands the tropical warm water zone, causes a poleward shift of the mid-latitude temperature gradient, hence forces a corresponding shift in the atmospheric circulation and the associated wind pattern. The shift in wind, in turn drives a shift in the ocean circulation. Our simulations, despite being idealised, capture the main features of the observed climate changes, for example, the enhanced subtropical ocean warming, poleward shift of the patterns of near-surface wind, sea level pressure, storm tracks, precipitation and large-scale ocean circulation, implying that increase in greenhouse gas concentrations not only raises the temperature, but can also systematically shift the climate zones poleward.


2022 ◽  
pp. 1-18
Author(s):  
Masashi Takagi ◽  
Junichi Ninomiya ◽  
Nobuhito Mori ◽  
Tomoya Shimura ◽  
Takuya Miyashita

2022 ◽  
Vol 22 (1) ◽  
pp. 119-137
Author(s):  
Manu Anna Thomas ◽  
Abhay Devasthale ◽  
Michael Kahnert

Abstract. Given the vast expanse of oceans on our planet, marine aerosols (and sea salt in particular) play an important role in the climate system via multitude of direct and indirect effects. The efficacy of their net impact, however, depends strongly on the local meteorological conditions that influence their physical, optical and chemical properties. Understanding the coupling between aerosol properties and meteorological conditions is therefore important. It has been historically difficult to statistically quantify this coupling over larger oceanic areas due to the lack of suitable observations, leading to large uncertainties in the representation of aerosol processes in climate models. Perhaps no other region shows higher uncertainties in the representation of marine aerosols and their effects than the Southern Ocean. During winter the Southern Ocean boundary layer is dominated by sea salt emissions. Here, using 10 years of austral winter period (June, July and August, 2007–2016) space-based aerosol profiling by CALIOP-CALIPSO in combination with meteorological reanalysis data, we investigated the sensitivity of marine aerosol properties over the Southern Ocean (40–65∘ S) to various meteorological parameters, such as vertical relative humidity (RH), surface wind speed and sea surface temperature (SST) in terms of joint histograms. The sensitivity study is done for the climatological conditions and for the enhanced cyclonic and anticyclonic conditions in order to understand the impact of large-scale atmospheric circulation on the aerosol properties. We find a clear demarcation in the 532 nm aerosol backscatter and extinction at RH around 60 %, irrespective of the state of the atmosphere. The backscatter and extinction increase at higher relative humidity as a function of surface wind speed. This is mainly because of the water uptake by the wind-driven sea salt aerosols at high RH near the ocean surface resulting in an increase in size, which is confirmed by the decreased depolarization for the wet aerosols. An increase in aerosol backscatter and extinction is observed during the anticyclonic conditions compared to cyclonic conditions for the higher wind speeds and relative humidity, mainly due to aerosols being confined to the boundary layer, and their proximity to the ocean surface facilitates the growth of the particles. We further find a very weak dependency of aerosol backscatter on SSTs at lower wind speeds. However, when the winds are stronger than about 12 m s−1, the backscattering coefficient generally increases with SST. When aerosol properties are investigated in terms of aerosol verticality and in relation to meteorological parameters, it is seen that the aerosol backscatter values in the free troposphere (pressure <850 hPa) are much lower than in the boundary layer, irrespective of the RH and the three weather states. This indicates that the local emissions from the ocean surface make the dominant contribution to aerosol loads over the Southern Ocean. A clear separation of particulate depolarization is observed in the free and lower troposphere, more prominent in the climatological mean and the cyclonic states. For RH > 60 %, low depolarization values are noticeable in the lower troposphere, which is an indication of the dominance of water-coated and mostly spherical sea salt particles. For RH < 60 %, there are instances when the aerosol depolarization increases in the boundary layer; this is more prominent in the mean and anticyclonic cases, which can be associated with the presence of drier aerosol particles. Based on the joint histograms investigated here, we provide third-degree polynomials to obtain aerosol extinction and backscatter as a function of wind speed and relative humidity. Additionally, backscattering coefficient is also expressed jointly in terms of wind speed and sea surface temperature. Furthermore, depolarization is expressed as a function of relative humidity. These fitting functions would be useful to test and improve the parameterizations of sea salt aerosols in the climate models. We also note some limitations of our study. For example, interpreting the verticality of aerosol properties (especially depolarization) in relation to the meteorological conditions in the free and upper troposphere (pressure <850 hPa) was challenging. Furthermore, we do not see any direct evidence of sudden crystallization (efflorescence), deliquescence or hysteresis effects of the aerosols. Observing such effects will likely require a targeted investigation of individual cases considering tracer transport, rather than the statistical sensitivity study that entails temporally and geographically averaged large data sets.


2022 ◽  
Author(s):  
Noah A. Paoa-Kannegiesser ◽  
Charles H. Fletcher ◽  
Tiffany R. Anderson ◽  
Makena Coffman

Abstract Projecting sea level rise (SLR) impacts requires defining ocean surface variability as a source of uncertainty. We analyze data from a Regional Ocean Modeling System (ROMS) reanalysis for the region surrounding the main Hawaiian Islands to incorporate the ocean surface uncertainty in mapping SLR flood probabilities. By analyzing the ocean surface height component of the ROMS reanalysis, we create an ocean surface reference (ORS) as a proxy for MHHW. We model the NOAA Intermediate, Intermediate-high and High regional SLR scenarios for the years 2050 and 2100 at three field sites around Oʻahu; Waikīkī, Hauʻula, Haleʻiwa. We calculate a probability density function (PDF) by convolving the PDF of water level derived from the ROMS reanalysis data with the PDF of error associated with a digital elevation model of the study sites. The resulting joint-PDF of flood depth allows us to create two types of probability-based flood projections: (1) Maps illustrating varying flood depths for a given probability threshold and, (2) maps illustrating varying probability for a specific flood depth. We compare 80% probability flood projections using our ORS approach to projections using the TCARI grid, the standard NOAA method. We highlight the importance of uncertainty and user-defined probability in identifying pixels that function as tipping points distinguishing flooding styles.


2022 ◽  
Vol 578 ◽  
pp. 117327
Author(s):  
Syee Weldeab ◽  
Carsten Rühlemann ◽  
Qinghua Ding ◽  
Vyacheslav Khon ◽  
Birgit Schneider ◽  
...  

2021 ◽  
Vol 21 (24) ◽  
pp. 18213-18225
Author(s):  
Leigh R. Crilley ◽  
Louisa J. Kramer ◽  
Francis D. Pope ◽  
Chris Reed ◽  
James D. Lee ◽  
...  

Abstract. Nitrous acid, HONO, is a key net photolytic precursor to OH radicals in the atmospheric boundary layer. As OH is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of HONO sources is important to predict atmospheric oxidising capacity. While a number of HONO formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface-mediated conversion of NO2 to HONO in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of HONO and related species obtained at two contrasting coastal locations – Cabo Verde (Atlantic Ocean, denoted Cape Verde herein), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted northern European coastal waters. As expected, higher average concentrations of HONO (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (HONO < 5 ppt). At both sites, the approximately constant HONO/NO2 ratio at night pointed to a low importance for the dark, ocean-surface-mediated conversion of NO2 into HONO, whereas the midday maximum in the HONO/NO2 ratios indicated significant contributions from photo-enhanced HONO formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark, ocean-surface HONO-to-NO2 conversion of CHONO = 0.0011 ppb h−1 from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant HONO formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of HONO is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate.


2021 ◽  
Vol 2 (4) ◽  
pp. 1149-1166
Author(s):  
Dalton K. Sasaki ◽  
Carolina B. Gramcianinov ◽  
Belmiro Castro ◽  
Marcelo Dottori

Abstract. Extratropical cyclones are known to generate extreme significant wave height (swh) values at the ocean surface in the western South Atlantic (wSA), which are highly influenced by intraseasonal scales. This work aims to investigate the importance of intraseasonal timescales (30–180 d) in the regional climatology of waves and its atmospheric forcing. The variability is explained by analyzing the storm track modulation due to westerly winds. These winds present timescales and spatial patterns compatible with the intraseasonal component of the Pacific South American (PSA) patterns. The analyses are made using ECMWF’s ERA5 from 1979 to 2019 and a database of extratropical cyclones based on the same reanalysis. Empirical orthogonal function (EOF) analyses of the 10 m zonal wind and swh are used to assess the regime of westerlies and waves in the wSA. The EOF1 of the 10 m zonal wind (u10) presented a core centered at 45∘ W and 40∘ S, while the EOF2 is represented by two cores organized into a seesaw pattern with a center between 30–40∘ S and another to the south of 40∘ S. Composites of cyclone genesis and track densities as well as swh fields were calculated based on the phases of both EOFs. In short, EOF phases presenting cores with a positive (negative) u10 anomaly provide a favorable (unfavorable) environment for cyclone genesis and track densities and, therefore, positive (negative) swh anomalies. The modulation of the cyclone tracks is significant for extreme values of the swh. The spatial patterns of the EOFs of u10 are physically and statistically consistent with 200 and 850 hPa geopotential height signals from the Pacific, indicating the importance of the remote influence of the PSA patterns over the wSA.


Author(s):  
Chenxu Ji ◽  
Yuanzhi Zhang ◽  
Qiuming Cheng ◽  
Jin Yeu Tsou
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document