wave energy dissipation
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 40)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 245 ◽  
pp. 110419
Author(s):  
Tu Le Xuan ◽  
Hung Le Manh ◽  
Hoang Tran Ba ◽  
Duong Do Van ◽  
Hoang Thai Duong Vu ◽  
...  

Coasts ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 73-89
Author(s):  
Ivana M. Mingo ◽  
Rafael Almar ◽  
Laurent Lacaze

Low tide terrace (LLT) beaches are characterised by a moderately steep beach face and a flat shallow terrace influencing the local hydro-morphodynamics during low tide. The upper beachface slope (β) and the terrace width (Lt) are the main morphological parameters that define the shape of LTT cross-shore beach profiles. This work aims at better understanding the behaviour of β and Lt and their link with the incoming wave forcing. For this purpose, our results are based on 3.5 years times series of daily beach profiles and wave conditions surveys at two different microtidal LTT beaches with similar sediments size but different wave climate, one at Nha Trang (Vietnam) and the other one at Grand Popo (Benin). While they look similar, two contrasting behaviour were linked to two sub-types of LTT regimes: the first one is surf regulated beaches (SRB) where the swash zone is highly regulated by the surf zone wave energy dissipation on the terrace, and the second is swash regulated beaches (SwRB) acting in more reflective regime where the terrace is not active and the energy dissipation is mainly produced in the swash zone, the terrace becomes a consequences of the high dynamics in the swash zone. Finally, extending the common view of an equilibrium beach profile as a power law of the cross-shore distance, the ability of a simple parametrized cubic function model with the Dean number as unique control parameters is proposed and discussed. This simple model can be used for the understanding of LLT environments but it can not be extended to the whole beach spectrum.


2021 ◽  
Vol 21 (10) ◽  
pp. 252
Author(s):  
Liang Xiang ◽  
Bing Ma ◽  
Qiu-Huan Li ◽  
Ling Chen ◽  
Hong-Wei Yu ◽  
...  

Abstract In-situ observations from the FREJA magnetospheric research satellite and the Fast Auroral SnapshoT satellite have shown that plasma waves are frequently observed in the auroral plasma, which are believed to be fundamentally important in wave energy dissipation and particle energization. However, the effects of a displacement current on these waves have not been examined. Based on the two-fluid theory, we investigate the dispersion relation and polarization properties of fast, Alfvén, and slow modes in the presence of a displacement current, and the effects of the displacement current on these waves are also considered. The results show that the wave frequency, polarization, magnetic helicity and other properties for the fast and Alfvén modes are highly sensitive to the normalized Alfvén velocity vA /c, plasma beta β, and propagation angle θ, while for the slow mode the dependence is minor. In particular, for both fast and Alfvén modes, the magnetic helicity is obviously different with and without the displacement current, especially for the Alfvén mode with the helicity reversals from right-handed to left-handed when vA /c increases from 0 to 0.3. The charge-neutral condition of both fast and Alfvén modes with frequencies larger than the proton cyclotron frequency is invalid in the presence of the displacement current. Moreover, the presence of the displacement current leads to relatively large magnetic compressibility for the Alfvén mode and relatively large electron compressibility for the fast mode. These results can be useful for a comprehensive understanding of the wave properties and the physics of particle energization phenomena in auroral plasmas.


2021 ◽  
Vol 9 (9) ◽  
pp. 1007
Author(s):  
Mohammad Ghiasian ◽  
Jane Carrick ◽  
Claire Bisson ◽  
Brian K. Haus ◽  
Andrew C. Baker ◽  
...  

Coral reefs function as submerged breakwaters providing wave mitigation and flood-reduction benefits for coastal communities. Although the wave-reducing capacity of reefs has been associated with wave breaking and friction, studies quantifying the relative contribution by corals are lacking. To fill this gap, a series of experiments was conducted on a trapezoidal artificial reef model with and without fragments of staghorn coral skeletons attached. The experiments were performed at the University of Miami’s Surge-Structure-Atmosphere-Interaction (SUSTAIN) Facility, a large-scale wind/wave tank, where the influence of coral skeletons on wave reduction under different wave and depth conditions was quantified through water level and wave measurements before and after the reef model. Coral skeletons reduce wave transmission and increase wave-energy dissipation, with the amount depending on the hydrodynamic conditions and relative geometrical characteristics of the reef. The trapezoidal artificial coral reef model was found to reduce up to 98% of the wave energy with the coral contribution estimated to be up to 56% of the total wave-energy dissipation. Depending on the conditions, coral skeletons can thus enhance significantly, through friction, the wave-reducing capability of a reef.


Author(s):  
Dag Myrhaug ◽  
Pierre-Yves Henry

This article addresses the random wave energy dissipation due to submerged aquatic plants in shallow water based on deep water wave conditions including estimation of wave damping. The motivation is to provide a simple engineering tool suitable to use when assessing random wave damping due to small patches of plants in shallow water. Examples of application for typical field conditions are provided. The present method versus common practice is discussed. A possible application of the outcome of this study is that it can be used as a parameterization of wave energy dissipation due to vegetation patches of limited size in operational estuarine and coastal circulation models.


Author(s):  
Mona Abdeltawab Gomaa ◽  
Tamer HMA Kasem ◽  
Andreas Schlenkhoff

Submerged breakwaters are efficient structures used for shore protection. Many design features of these structures are captured upon modeling wave propagation over submerged square obstacles. The presence of separation vortices and large free surface deformations complicates the problem. A multiphase turbulent numerical model is developed using ANSYS commercial package. Careful domain discretization is done employing suitable mesh clustering to capture high gradients. Various numerical model parameters are provided, including grid size and time step. Special attention is directed towards clarifying turbulence initial conditions. Stable simulation results are obtained within acceptable computational time. Numerical results are validated quantitatively using subsurface measurements. Comparison along continuous horizontal and vertical velocity profiles is provided. Temporal and spatial model resolutions are illustrated for three test cases. The effect of wave period and height is well focused. The unsteady vortical structure is visualized. The incident wave energy is calculated and validated against theoretical values. The wave energy dissipation characteristics are briefly explained.


Author(s):  
Qi Hao ◽  
Stewart Greenhalgh

The quality factor ( Q ) links seismic wave energy dissipation to physical properties of the Earth’s interior, such as temperature, stress and composition. Frequency independence of Q , also called constant Q for brevity, is a common assumption in practice for seismic Q inversions. Although exactly and nearly constant Q dissipative models are proposed in the literature, it is inconvenient to obtain constant Q wave equations in differential form, which explicitly involve a specified Q parameter. In our recent research paper, we proposed a novel weighting function method to build the first- and second-order nearly constant Q dissipative models. Of importance is the fact that the wave equations in differential form for these two models explicitly involve a specified Q parameter. This behaviour is beneficial for time-domain seismic waveform inversion for Q , which requires the first derivative of wavefields with respect to Q parameters. In this paper, we extend the first- and second-order nearly constant Q models to the general viscoelastic anisotropic case. We also present a few formulations of the nearly constant Q viscoelastic anisotropic wave equations in differential form.


2021 ◽  
Author(s):  
Tara Saladin ◽  
Young W. Kwon ◽  
Joseph T. Klamo

Abstract Computational fluid dynamics (CFD) has been used to estimate the wave loading applied to a fully submerged body near the surface. The Navier-Stokes equations were used for the present study. In terms of modeling the fluid-solid interface, two different techniques are available in ANSYS CFX. One is the Rigid Body Method (RBM) and the other is the Immersed Solid Method (ISM). This paper compares the two modeling techniques in terms of accuracy and modeling flexibility. For this study, a CFD model of the NPS tow tank with wave generation and a submerged body was created to investigate different methods of solid body modeling. A comparison of the RBM and ISM was performed modeling a submerged rectangular body at different depths. The models produced similar results when the body was lower beneath the wave surface with limited fluid-solid interaction. As the amount of fluid-solid interaction increased, the RBM showed increased amounts of wave energy dissipation as compared to the ISM. This disruption of the wave energy resulted in the RBM showing smaller body forces and moments when compared to the ISM solid model. The increased wave energy dissipation in the RBM is likely caused by the different mechanism for modeling body-solid interaction. The numerical results were also compared to the experimental data.


Sign in / Sign up

Export Citation Format

Share Document