Application of the finite-difference time-domain (FDTD) method with local grid refinement to nanostructure design

2005 ◽  
Author(s):  
Aramais R. Zakharian ◽  
Jerome V. Moloney ◽  
Colm Dineen ◽  
Moysey Brio
Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Eng Leong Tan

The leapfrog schemes have been developed for unconditionally stable alternating-direction implicit (ADI) finite-difference time-domain (FDTD) method, and recently the complying-divergence implicit (CDI) FDTD method. In this paper, the formulations from time-collocated to leapfrog fundamental schemes are presented for ADI and CDI FDTD methods. For the ADI FDTD method, the time-collocated fundamental schemes are implemented using implicit E-E and E-H update procedures, which comprise simple and concise right-hand sides (RHS) in their update equations. From the fundamental implicit E-H scheme, the leapfrog ADI FDTD method is formulated in conventional form, whose RHS are simplified into the leapfrog fundamental scheme with reduced operations and improved efficiency. For the CDI FDTD method, the time-collocated fundamental scheme is presented based on locally one-dimensional (LOD) FDTD method with complying divergence. The formulations from time-collocated to leapfrog schemes are provided, which result in the leapfrog fundamental scheme for CDI FDTD method. Based on their fundamental forms, further insights are given into the relations of leapfrog fundamental schemes for ADI and CDI FDTD methods. The time-collocated fundamental schemes require considerably fewer operations than all conventional ADI, LOD and leapfrog ADI FDTD methods, while the leapfrog fundamental schemes for ADI and CDI FDTD methods constitute the most efficient implicit FDTD schemes to date.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Houxiao Wang ◽  
Wei Zhou ◽  
Er Ping Li ◽  
Rakesh Ganpat Mote

The butterfly-inspired 2D periodic tapered-staggered subwavelength gratings were developed mainly using finite difference time domain (FDTD) method, assisted by using focused ion beam (FIB) nanoscale machining or fabrication. The periodic subwavelength structures along the ridges of the designed gratings may change the electric field intensity distribution and weaken the surface reflection. The performance of the designed SiO2gratings is similar to that of the corresponding Si gratings (the predicted reflectance can be less than around 5% for the bandwidth ranging from 0.15 μm to 1 μm). Further, the antireflection performance of the designedx-unspaced gratings is better than that of the correspondingx-spaced gratings. Based on the FDTD designs and simulated results, the butterfly-inspired grating structure was fabricated on the silicon wafer using FIB milling, reporting the possibility to fabricate these FDTD-designed subwavelength grating structures.


2014 ◽  
Vol 945-949 ◽  
pp. 2486-2489
Author(s):  
Qing Chao Nie ◽  
Bing Kang Chen

A finite-difference time-domain method based on the auxiliary differential equation (ADE) technique is used to obtain the formulation of 2-D TM wave propagation in lossy Lorentz media. In the paper, the reflected coefficients calculated by ADE-FDTD method and the exact theoretical result are better agreement.


Sign in / Sign up

Export Citation Format

Share Document