Comodulation masking release and the masking-level difference

1991 ◽  
Vol 89 (6) ◽  
pp. 3007-3008 ◽  
Author(s):  
Marion F. Cohen ◽  
Earl D. Schubert
2021 ◽  
Author(s):  
Hyojin Kim ◽  
Viktorija Ratkute ◽  
Bastian Epp

Comodulated masking noise and binaural cues can facilitate detecting a target sound from noise. These cues can induce a decrease in detection thresholds, quantified as comodulation masking release (CMR) and binaural masking level difference (BMLD), respectively. However, their relevance to speech perception is unclear as most studies have used artificial stimuli different from speech. Here, we investigated their ecological validity using sounds with speech-like spectro-temporal dynamics. We evaluated the ecological validity of such grouping effect with stimuli reflecting formant changes in speech. We set three masker bands at formant frequencies F1, F2, and F3 based on CV combination: /gu/, /fu/, and /pu/. We found that the CMR was little (< 3 dB) while BMLD was comparable to previous findings (~ 9 dB). In conclusion, we suggest that other features may play a role in facilitating frequency grouping by comodulation such as the spectral proximity and the number of masker bands.


1992 ◽  
Vol 336 (1278) ◽  
pp. 331-337 ◽  

In random noise, masking is influenced almost entirely by noise components in a narrow band around the signal frequency. However, when the noise is not random, but has a modulation pattern which is coherent across frequency, noise components relatively remote from the signal frequency can actually produce a release from masking. This masking release has been called comodulation masking release (CMR). The present research investigated whether a similar release from masking occurs in the analysis of a suprathreshold signal. Specifically, the ability to detect the presence of a temporal gap was investigated in conditions which do and do not result in CMR for detection threshold. Similar conditions were investigated for the masking level difference (a binaural masking release phenomenon). The results indicated that suprathreshold masking release for gap detection occurred for both the masking-level difference (MLD) and for CMR. However, masking release for gap detection was generally smaller than that obtained for detection threshold. The largest gap detection masking release effects obtained corresponded to relatively low levels of stimulation, where gap detection was relatively poor.


2021 ◽  
Author(s):  
Hyojin Kim ◽  
Viktorija Ratkute ◽  
Bastian Epp

When a target tone is preceded by a noise, the threshold for target detection can be increased or decreased depending on the type of a preceding masker. The effect of preceding masker to the following sound can be interpreted as either the result of adaptation at the periphery or at the system level. To disentangle these, we investigated the time constant of adaptation by varying the length of the preceding masker. For inducing various masking conditions, we designed stimuli that can induce masking release. Comodulated masking noise and binaural cues can facilitate detecting a target sound from noise. These cues induce a decrease in detection thresholds, quantified as comodulation masking release (CMR) and binaural masking level difference (BMLD), respectively. We hypothesized that if the adaptation results from the top-down processing, both CMR and BMLD will be affected with increased length of the preceding masker. We measured CMR and BMLD when the length of preceding maskers varied from 0 (no preceding masker) to 500 ms. Results showed that CMR was more affected with longer preceding masker from 100 ms to 500 ms while the preceding masker did not affect BMLD. In this study, we suggest that the adaptation to preceding masking sound may arise from low level (e.g. cochlear nucleus, CN) rather than the temporal integration by the higher-level processing.


2015 ◽  
Vol 138 (2) ◽  
pp. 1194-1205
Author(s):  
Ramona Grzeschik ◽  
Björn Lübken ◽  
Jesko L. Verhey

2011 ◽  
Vol 129 (5) ◽  
pp. 3181-3193 ◽  
Author(s):  
Simon A. Goldman ◽  
Thomas Baer ◽  
Brian C. J. Moore

2005 ◽  
Vol 118 (5) ◽  
pp. 3229-3240 ◽  
Author(s):  
G. Bruce Henning ◽  
Virginia M. Richards ◽  
Jennifer J. Lentz

2011 ◽  
Vol 130 (5) ◽  
pp. 2866-2873 ◽  
Author(s):  
Simon A. Goldman ◽  
Thomas Baer ◽  
Brian C. J. Moore

1989 ◽  
Vol 42 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Robert P. Carlyon ◽  
Søren Buus ◽  
Mary Florentine

Sign in / Sign up

Export Citation Format

Share Document