Incoherent strange metal sharply bounded by a critical doping in Bi2212

Science ◽  
2019 ◽  
Vol 366 (6469) ◽  
pp. 1099-1102 ◽  
Author(s):  
Su-Di Chen ◽  
Makoto Hashimoto ◽  
Yu He ◽  
Dongjoon Song ◽  
Ke-Jun Xu ◽  
...  

In normal metals, macroscopic properties are understood using the concept of quasiparticles. In the cuprate high-temperature superconductors, the metallic state above the highest transition temperature is anomalous and is known as the “strange metal.” We studied this state using angle-resolved photoemission spectroscopy. With increasing doping across a temperature-independent critical value pc ~ 0.19, we observed that near the Brillouin zone boundary, the strange metal, characterized by an incoherent spectral function, abruptly reconstructs into a more conventional metal with quasiparticles. Above the temperature of superconducting fluctuations, we found that the pseudogap also discontinuously collapses at the very same value of pc. These observations suggest that the incoherent strange metal is a distinct state and a prerequisite for the pseudogap; such findings are incompatible with existing pseudogap quantum critical point scenarios.

2006 ◽  
Vol 13 (02n03) ◽  
pp. 185-190
Author(s):  
M. KATO ◽  
K. OZAWA ◽  
T. SATO ◽  
K. EDAMOTO

Adsorption of oxygen on α- Mo 2 C (0001) is investigated with Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES) utilizing synchrotron radiation. It is found that C KLL Auger peak intensity does not change during O 2 exposure, indicating that the depletion of C atoms does not proceed. It is deduced from ARPES and LEED results that adsorbed oxygen atoms from a well-ordered (1 × 1) lattice on the α- Mo 2 C (0001) surface. The ARPES study shows that oxygen adsorption induces a peculiar state around Fermi level (E F ). Off-normal-emission measurements prove that the state is a half-filled metallic state.


2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Kyungchan Lee ◽  
Daixiang Mou ◽  
Na Hyun Jo ◽  
Yun Wu ◽  
Benjamin Schrunk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document