oxygen adsorption
Recently Published Documents


TOTAL DOCUMENTS

1213
(FIVE YEARS 117)

H-INDEX

71
(FIVE YEARS 6)

2022 ◽  
pp. 152438
Author(s):  
Bo-Hong Liu ◽  
Maximilian Huber ◽  
Matthijs A. van Spronsen ◽  
Miquel Salmeron ◽  
Hendrik Bluhm

2022 ◽  
Author(s):  
Yucheng He ◽  
Pengqi Hai ◽  
Chao Wu

Nanocatalysts, due to their small size and/or lattice mismatch among hetero components, are born with strain. During reaction, adsorbates alongside strain may cause the catalyst’s surface to reorganize, which can...


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1475
Author(s):  
Ireneusz Kocemba ◽  
Izabela Śmiechowicz ◽  
Marcin Jędrzejczyk ◽  
Jacek Rogowski ◽  
Jacek Michał Rynkowski

The concept of very strong metal–support interactions (VSMSI) was defined in regard to the interactions that influence the catalytic properties of catalysts due to the creation of a new phase as a result of a solid-state chemical reaction between the metal and support. In this context, the high catalytic activity of the 1%Pt/Al2O3 catalyst in the CO oxidation reaction at room temperature was explained. The catalyst samples were reduced at different temperatures ranging from 500 °C to 800 °C and characterized using TPR, O2/H2 titration, CO chemisorption, TPD-CO, FTIR-CO, XRD, and TOF-SIMS methods. Based on the obtained results, it was claimed that with very high temperature reduction (800 °C), nonstoichiometric platinum species [Pt(Cl)Ox] strongly anchored to Al2O3 surface are formed. These species act as the oxygen adsorption sites.


2021 ◽  
Author(s):  
Zilong Chen ◽  
Zhaowei Zhu ◽  
Liting Huang ◽  
Chuantong Cheng

Abstract Photodetectors (PDs) are the core component of multiple commercial optical sensing systems. Currently, the detection of ultra-weak ultraviolet (UV) optical signals is becoming increasingly important for wide range of applications in civil and military industries. Due to its wide band gap, low cost, and long-term stability, titanium dioxide (TiO2) is an attractive material for UV photodetection. A kind of low-cost TiO2 nanomaterial (named as P25) manufactured by flame hydrolysis is an easily available commercial material. However, a low-cost and high-sensitivity UV PD based on P25 has not been achieved until now. Here, a hybrid UV PD with monolayer CVD graphene covered by a thin film of P25 quantum dots was prepared for the first time, and its responsivity was approximately 105 A/W at 365 nm wavelength. The response time and recovery time of the UV PD were 32.6 s and 34 s, respectively. Strong light absorption and photocontrolled oxygen adsorption of the P25 layer resulted in high UV sensitivity. The UV PDs proposed in this work have great potential for commercialization due to their low cost and high sensitivity.


2021 ◽  
Vol MA2021-02 (39) ◽  
pp. 1175-1175
Author(s):  
Hiroyuki Okazaki ◽  
Akira Idesaki ◽  
Hiroshi Koshikawa ◽  
Daiju Matsumura ◽  
Shunya Yamamoto ◽  
...  

Author(s):  
Albert Aniagyei ◽  
Caroline Kwawu ◽  
Ralph Kwakye ◽  
Boniface Yeboah Antwi ◽  
Jonathan Osei-Owusu

AbstractThe oxygen adsorption and subsequent reduction on the {100} and {110} surfaces of 25% Ba-doped LaMnO3 (LBM25) have been studied at the density functional theory (DFT) with Hubbard correction and the results compared with adsorption on 25% Ca-doped LaMnO3 (LCM25) and Sr-doped LaMnO3 (LSM25). The trend in the reduction energies at the Mn cation sites are predicted to be in the order LSM25 < LBM25 < LCM25. In addition, the trend in dissociation energies for the most exothermic dissociated precursors follow the order LBM25 < LSM25 < LCM25. The adsorption energies (− 2.14 to − 2.41 eV) calculated for the molecular O2 precursors at the Mn cation sites of LCM25, LSM25 and LBM25 are thermodynamically stable, when compared directly with the adsorption energies (Eads = − 0.56 to − 1.67 eV) reported for the stable molecular O2 precursors on the Pt, Ni, Pd, Cu and Ir {111} surfaces. The predicted Gibbs energies as a function of temperature (T = 500–1100 °C) and pressures (p = 0.2 atm) for the adsorption and dissociation on the surfaces were negative, an indication of the feasibility of oxygen reduction reaction on the {100} and {110} surfaces at typical operating temperatures reported in this work.


Sign in / Sign up

Export Citation Format

Share Document