scholarly journals Comparative In Vitro Activities of the Investigational Fluoroquinolone DC-159a and Other Antimicrobial Agents against Human Mycoplasmas and Ureaplasmas

2008 ◽  
Vol 52 (10) ◽  
pp. 3776-3778 ◽  
Author(s):  
Ken B. Waites ◽  
Donna M. Crabb ◽  
Lynn B. Duffy

ABSTRACT The in vitro susceptibilities of 151 unique clinical isolates of Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma fermentans, Mycoplasma genitalium, and Ureaplasma species to DC-159a, an investigational fluoroquinolone, in comparison with those to other agents were determined. Macrolides were the most active agents against M. pneumoniae and M. genitalium, whereas clindamycin was most active against M. hominis. DC-159a MICs were ≤0.5 μg/ml for all Mycoplasma species and ≤4 μg/ml for ureaplasmas. DC-159a was the most active fluoroquinolone tested against M. pneumoniae and M. fermentans, and it was second to moxifloxacin against the other species. It was bactericidal against 10 M. pneumoniae isolates and demonstrated killing of ≥99.9% of the inoculum at 24 h for 2 isolates. The excellent in vitro activity of DC-159a demonstrates its potential for use in the treatment of infections due to mycoplasmas and ureaplasmas.

2009 ◽  
Vol 53 (12) ◽  
pp. 5317-5318 ◽  
Author(s):  
Shilpakala Sainath Rao ◽  
Raghavachari Raghunathan ◽  
Malathi Raghunathan ◽  
Ramesh Ekambaram

2003 ◽  
Vol 47 (1) ◽  
pp. 161-165 ◽  
Author(s):  
Ken B. Waites ◽  
Donna M. Crabb ◽  
Xue Bing ◽  
Lynn B. Duffy

ABSTRACT The in vitro susceptibilities to garenoxacin (BMS-284756), an investigational des-fluoroquinolone, and eight other agents were determined for 63 Mycoplasma pneumoniae, 45 Mycoplasma hominis, 15 Mycoplasma fermentans, and 68 Ureaplasma sp. isolates. Garenoxacin was the most active quinolone, inhibiting all isolates at ≤1 μg/ml. The garenoxacin MIC at which 90% of isolates are inhibited (MIC90s; ≤0.008 μg/ml) was at least 4-fold less than those of moxifloxacin and clindamycin, 8-fold less than that of sparfloxacin, and 64-fold less than those of levofloxacin and ciprofloxacin for M. pneumoniae. For M. hominis, the garenoxacin MIC90 (≤0.008 μg/ml) was 4-fold less than those of clindamycin and moxifloxacin, 8-fold less than that of sparfloxacin, and 64-fold less than those of levofloxacin and ciprofloxacin. All 15 M. fermentans isolates were inhibited by garenoxacin at concentrations ≤0.008 μg/ml, making it the most active drug tested against this organism. For Ureaplasma spp., the garenoxacin MIC90 (0.25 μg/ml) was equivalent to those of moxifloxacin and doxycycline, 4-fold less than those of levofloxacin and sparfloxacin, 8-fold less than that of azithromycin, and 32-fold less than that of ciprofloxacin. Garenoxacin and the other fluoroquinolones tested were demonstrated to have bactericidal activities against M. pneumoniae and M. hominis by measurement of minimal bactericidal activities and by time-kill studies. Further study of garenoxacin is required, as it has great potential for use in the treatment of infections due to mycoplasmas and ureaplasmas.


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Ken B. Waites ◽  
Donna M. Crabb ◽  
Li Xiao ◽  
Lynn B. Duffy ◽  
Sixto M. Leal

ABSTRACT We performed in vitro susceptibility testing for eravacycline in comparison to 4 other antimicrobials against 10 Mycoplasma genitalium, 40 Mycoplasma hominis, 44 Mycoplasma pneumoniae, 20 Ureaplasma parvum, and 20 Ureaplasma urealyticum isolates. All eravacycline MICs were ≤0.25 μg/ml, except that for one isolate of M. genitalium, for which the MIC was 2 μg/ml. Eravacycline was markedly more potent than tetracycline, azithromycin, moxifloxacin, and clindamycin against all isolates tested, which included 37 macrolide, tetracycline, and/or fluoroquinolone-resistant organisms.


2009 ◽  
Vol 53 (5) ◽  
pp. 2139-2141 ◽  
Author(s):  
Ken B. Waites ◽  
D. M. Crabb ◽  
Lynn B. Duffy

ABSTRACT MICs were determined for an investigational ketolide, CEM-101, and azithromycin, telithromycin, doxycycline, levofloxacin, clindamycin, and linezolid against 36 Mycoplasma pneumoniae, 5 Mycoplasma genitalium, 13 Mycoplasma hominis, 15 Mycoplasma fermentans, and 20 Ureaplasma isolates. All isolates, including two macrolide-resistant M. pneumoniae isolates, were inhibited by CEM-101 at ≤0.5 μg/ml, making CEM-101 the most potent compound tested.


Sign in / Sign up

Export Citation Format

Share Document