scholarly journals In Vitro Reconstitution of a Functional Duck Hepatitis B Virus Reverse Transcriptase: Posttranslational Activation by Hsp90

2000 ◽  
Vol 74 (24) ◽  
pp. 11447-11455 ◽  
Author(s):  
Jianming Hu ◽  
Dana Anselmo

ABSTRACT Reverse transcription in hepatitis B viruses is initiated through a unique protein priming mechanism whereby the viral reverse transcriptase (RT) first assembles into a ribonucleoprotein (RNP) complex with its RNA template and then initiates DNA synthesis de novo using the RT itself as a protein primer. RNP formation and protein priming require the assistance of host cell factors, including the molecular chaperone heat shock protein 90 (Hsp90). To better understand the mechanism of RT activation by Hsp90, we have now mapped the minimal RT sequences of the duck hepatitis B virus that are required for chaperone binding, RNP formation, and protein priming. Furthermore, we have reconstituted in vitro both RNP formation and protein priming using purified RT proteins and host factors. Our results show that (i) Hsp90 recognizes two independent domains of the RT, both of which are necessary for RNP formation and protein priming; (ii) Hsp90 function is required not only to establish, but also to maintain, the RT in a state competent for RNA binding; and (iii) Hsp90 is not required during RT synthesis and can activate the RT posttranslationally. Based on these findings, we propose a model for Hsp90 function whereby the chaperone acts as an active interdomain bridge to bring the two RT domains into a poised but labile conformation competent for RNP formation. It is anticipated that the reconstitution system established here will facilitate the isolation of additional host factors required for RT functions and further elucidation of the mechanisms of RT activation.

Virology ◽  
1988 ◽  
Vol 164 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Wolf-Bernhard Offensperger ◽  
Eike Walter ◽  
Silke Offensperger ◽  
Christine Zeschnigk ◽  
Hubert E. Blum ◽  
...  

1989 ◽  
Vol 29 (4) ◽  
pp. 244-248 ◽  
Author(s):  
Hideaki Haritani ◽  
Toshikazu Uchida ◽  
Yasunori Okuda ◽  
Toshio Shikata

2001 ◽  
Vol 34 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Béatrice Seignères ◽  
Stéphanie Aguesse-Germon ◽  
Christian Pichoud ◽  
Isabelle Vuillermoz ◽  
Catherine Jamard ◽  
...  

2002 ◽  
Vol 76 (1) ◽  
pp. 269-279 ◽  
Author(s):  
Jianming Hu ◽  
David Toft ◽  
Dana Anselmo ◽  
Xingtai Wang

ABSTRACT Initiation of reverse transcription in hepadnaviruses (hepatitis B viruses) depends on the specific binding of an RNA signal (the packaging signal, ε) on the pregenomic RNA template by the viral reverse transcriptase (RT) and is primed by the RT itself (protein priming). We have previously shown that the RT-ε interaction and protein priming require the cellular heat shock protein, Hsp90. However, additional host factors required for these reactions remained to be identified. We now report that five cellular chaperone proteins, all known cofactors of Hsp90, were sufficient to reconstitute a duck hepatitis B virus RT active in ε binding and protein priming in vitro. Four proteins, Hsp90, Hsp70, Hsp40, and Hop, were required for reconstitution of RT activity, and the fifth protein, p23, further enhanced the kinetics of reconstitution. RT activation by the chaperone proteins is a dynamic process dependent on ATP hydrolysis and the Hsp90 ATPase activity. Thus, our results have defined a minimal complement of host factors necessary and sufficient for RT activation. Furthermore, this defined in vitro reconstitution system has now paved the way for future biochemical and structural studies to elucidate the mechanisms of RT activation and chaperone functions.


2015 ◽  
Vol 196 ◽  
pp. 13-19 ◽  
Author(s):  
Qiang Liu ◽  
Juan Huang ◽  
Renyong Jia ◽  
Mingshu Wang ◽  
Dekang Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document