duck hepatitis
Recently Published Documents


TOTAL DOCUMENTS

766
(FIVE YEARS 76)

H-INDEX

55
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Joey McGregor ◽  
Joshua M. Hardy ◽  
Chan-Sien Lay ◽  
Irene Boo ◽  
Michael Piontek ◽  
...  

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384-661), that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bnAbs) in comparison to the parental form (receptor-binding domain; RBD). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S and RBD-S, and Δ123A7-S and RBDA7-S in which 7 cysteines were replaced with alanines. While all four E2-S VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells, and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bnmAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (nAbs), with three of those animals generating bnAbs against 7 genotypes. Immune serum generated by animals with nAbs mapped to major neutralization epitopes located at residues 412-420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease including cirrhosis and cancer. Broadly neutralizing antibodies that recognise the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus like particles that display epitopes recognised by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


Author(s):  
Nana Sui ◽  
Ruihua Zhang ◽  
Yue Jiang ◽  
Honglei Yu ◽  
Guige Xu ◽  
...  

Duck hepatitis A virus 1 (DHAV-1) is a highly contagious etiological agent that causes acute hepatitis in young ducklings. MicroRNAs (miRNAs) play important regulatory roles in response to pathogens. However, the interplay between DHAV-1 infection and miRNAs remains ambiguous. We characterized and compared miRNA and mRNA expression profiles in duck embryo fibroblasts cells (DEFs) infected with DHAV-1. In total, 36 and 96 differentially expressed (DE) miRNAs, and 4110 and 2595 DE mRNAs, were identified at 12 and 24 h after infection. In particular, 126 and 275 miRNA–mRNA pairs with a negative correlation were chosen to construct an interaction network. Subsequently, we identified the functional annotation of DE mRNAs and target genes of DE miRNAs enriched in diverse Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may be important for virus resistance, cell proliferation, and metabolism. Moreover, upregulated miR-222a could negatively regulate DHAV-1 replication in DEFs and downregulate integrin subunit beta 3 (ITGB3) expression by targeting the 3′ untranslated region (3′UTR), indicating that miR-222a may modulate DHAV-1 replication via interaction with ITGB3. In conclusion, the results reveal changes of mRNAs and miRNAs during DHAV-1 infection and suggest miR-222a as an antiviral factor against DHAV-1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fuchun Yang ◽  
Peng Liu ◽  
Xiaohan Li ◽  
Rui Liu ◽  
Li Gao ◽  
...  

Duck enteritis virus (DEV) and duck hepatitis A virus (DHAV) are prevalent duck pathogens, causing significant economic losses in the duck industry annually. Using a fosmid-based rescue system, we generated two DEV recombinants, rDEV-UL26/27-P13C and rDEV-US7/8-P13C, in which the P1 and 3C genes from DHAV type 3 (DHAV-3) were inserted into the DEV genome between genes UL26 and UL27 or genes US7 and US8. We inserted a self-cleaving 2A-element between P1 and 3C, allowing the production of both proteins from a single open reading frame. P1 and 3C were simultaneously expressed in infected chicken embryo fibroblasts, with no difference in growth kinetics between cells infected with the recombinant viruses and those infected with the parent DEV. Both recombinant viruses induced neutralizing antibodies against DHAV-3 and DEV in ducks. A single dose of the recombinant viruses induced solid protection against lethal DEV challenge and completely prevented DHAV-3 infection as early as 7 days post-vaccination. These recombinant P1- and 3C-expressing DEVs provide potential bivalent vaccines against DEV and DHAV-3 infection in ducks.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1479
Author(s):  
Xiaoting Zhang ◽  
Ruihua Zhang ◽  
Jingyu Wang ◽  
Nana Sui ◽  
Guige Xu ◽  
...  

With the continuous development of duck farming and the increasing breeding density, the incidence of duck hepatitis A virus type 1 (DHAV-1) has been on the rise, seriously endangering the development of duck farming. To reduce the use of antibiotics in duck breeding, susceptibility risks and mortality, and avoid virulence recovery and immune failure risk, this study aims to develop a new type of mucosal immune probiotics and make full use of molecular biology techniques, on the level of genetic engineering, to modify Lactococcus lactis (L. lactis). In this study, a secretory recombinant L. lactis named MG1363-VP1 with an enhanced Green Fluorescent Protein (eGFP) and translation enhancer T7g10L was constructed, which could express the VP1-eGFP fusion protein of DHAV-1. The animal experiment in ducklings was performed to detect the immune response and protection effect of oral microecologics by recombinant L. lactis. The results showed that oral L. lactis MG1363-VP1 significantly induced the body’s humoral immune system and mucosal immune system to produce specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) for DHAV-1 in ducklings, and cytokines including interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon gamma (IFN-γ). The mortality rate was monitored simultaneously by the natural infestation in the process of production and breeding; notably, the ducklings vaccinated with L. lactis MG1363-VP1 were effectively protected against the nature infection of DHAV-1. The recombinant L. lactis MG1363-VP1 constructed in this study provides a new means of preventing and controlling DHAV-1 infection in the future.


2021 ◽  
pp. 109300
Author(s):  
Xinhong Li ◽  
Xiaosi Tang ◽  
Mingshu Wang ◽  
Anchun Cheng ◽  
Xumin Ou ◽  
...  

2021 ◽  
pp. 912-917
Author(s):  
Nina Nikitina ◽  
Galina Samuseva ◽  
Konstantin Dmitriev ◽  
Larisa Yavdoshak ◽  
Alexandr Dubovoy

2021 ◽  
Author(s):  
Yuanzhi Liu ◽  
Yanglin Li ◽  
Mingshu Wang ◽  
Anchun Cheng ◽  
Xumin Ou ◽  
...  

Abstract Background: Duck hepatitis A virus type 1 (DHAV-1) is one of the most serious pathogens endangering the duck industry. However, there are few studies on the regulation of the cell cycle by DHAV-1.Methods: In this study, flow cytometry was applied to analyze the effect of DHAV-1 infection on the cell cycle of duck embryo fibroblasts (DEFs). Subsequently, we analyzed the effects of cell cycle phases on DHAV-1 replication by real-time reverse transcriptase quantitative PCR (real-time RT-qPCR).Results: Flow cytometry data analysis found that DEFs in the S phase increased by 25.85% and 54.21% at 24h and 48h after DHAV-1 infection, respectively. The levels of viral RNA detected by real-time RT-qPCR were higher in the DEFs with synchronization in the S phase or G0/G1 phase than in the control group. However, there was no difference in viral copy number between the G2/M phase arrest and control groups. In addition, nonstructural protein 3D of DHAV-1 significantly increased cells in the S phase, indicating that 3D protein is one of the reasons for the cell cycle arrest in the S phase.Conclusions: In summary, DHAV-1 infection induces the cell cycle of DEFs to be arrested in the S phase. Both S phase and G0/G1 phase synchronization facilitate the replication of DHAV-1, and 3D protein is one of the reasons for the S phase arrest.


Sign in / Sign up

Export Citation Format

Share Document