scholarly journals Recalibrating the Devonian time scale: A new method for integrating radioisotopic and astrochronologic ages in a Bayesian framework

Author(s):  
Claire O. Harrigan ◽  
Mark D. Schmitz ◽  
D. Jeffrey Over ◽  
Robin B. Trayler ◽  
Vladimir I. Davydov

The numerous biotic, climatic, and tectonic events of the Devonian cannot be correlated and investigated without a well-calibrated time scale. Here, we updated the calibration of the Devonian time scale using a Bayesian age-depth model that incorporates radioisotopic ages and astrochronology durations. We used existing radioisotopic ages collected and harmonized in the last two geologic time scale compilations, as well as new U-Pb zircon ages from Emsian {Hercules I K-bentonite, Wetteldorf, Germany: 394.290 ± 0.097(0.21)[0.47] Ma} and Eifelian K-bentonites {Tioga B and Tioga F K-bentonites, Fayette, New York, USA: 390.82 ± 0.18(0.26)[0.48] Ma and 390.14 ± 0.14(0.23)[0.47] Ma, respectively}. We anchored floating astrochronology stage durations on radioisotopic ages and chained astrochronologic constraints and uncertainty together to extrapolate conditioning age likelihoods up or down the geologic time scale, which is a new method for integrating astrochronology into age-depth modeling. The modeling results in similar ages and durations for Devonian stages regardless of starting biostratigraphic scaling assumptions. We produced a set of rescaled biostratigraphic zonations, and a new numerical calibration of Devonian stage boundary ages with robust uncertainty estimates, which allow us to evaluate future targets for Devonian time scale research. These methods are broadly applicable for time scale work and provide a template for an integrated stratigraphic approach to time scale modeling.

1991 ◽  
Vol 99 (5) ◽  
pp. 786-786
Author(s):  
John J. Flynn

2013 ◽  
pp. 476-476
Author(s):  
Frank D. Stacey ◽  
Paul M. Davis

2014 ◽  
Vol 54 (2) ◽  
pp. 473
Author(s):  
Tegan Smith ◽  
John Laurie ◽  
Lisa Hall ◽  
Robert Nicoll ◽  
Andrew Kelman ◽  
...  

The international Geologic Time Scale (GTS) continually evolves due to refinements in age dating and the addition of more defined stages. The GTS 2012 has replaced GTS 2004 as the global standard timescale, resulting in changes to the age and duration of most chronological stages. These revisions have implications for interpreted ages and durations of sedimentary rocks in Australian basins, with ramifications for petroleum systems modelling. Accurate stratigraphic ages are required to reliably model the burial history of a basin, hence kerogen maturation and hydrocarbon expulsion and migration. When the resolution of the time scale is increased, models that utilise updated ages will better reflect the true basin history. The international GTS is largely built around northern hemisphere datasets. At APPEA 2009, Laurie et al. announced a program to tie Australian biozones to GTS 2004. Now, with the implementation of GTS 2012, these ties are being updated and refined, requiring a comprehensive review of the correlations between Australian and International biozonation schemes. The use of Geoscience Australia’s Timescales Database and a customised ‘Australian Datapack’ for the visualisation software package TimeScale Creator has greatly facilitated the transition from GTS 2004 to GTS 2012, as anticipated in the design of the program in 2009. Geoscience Australia’s basin biozonation and stratigraphy charts (e.g. Northern Carnarvon and Browse basins) are being reproduced to reflect the GTS 2012 and modified stratigraphic ages. Additionally, new charts are being added to the series, including a set of onshore basin charts, such as the Georgina and Canning basins.


Sign in / Sign up

Export Citation Format

Share Document