Geological Magazine
Latest Publications


TOTAL DOCUMENTS

23195
(FIVE YEARS 447)

H-INDEX

92
(FIVE YEARS 6)

Published By Cambridge University Press

1469-5081, 0016-7568

2022 ◽  
pp. 1-21
Author(s):  
Jean-David Moreau ◽  
Romain Vullo ◽  
Sylvain Charbonnier ◽  
Romain Jattiot ◽  
Vincent Trincal ◽  
...  

Abstract Since the 1980s, the Upper Jurassic lithographic limestone of the Causse Méjean (southern France) has been known by local naturalists to yield fossils. However, until the beginning of the 21st century, this plattenkalk remained largely undersampled and scientifically underestimated. Here, we present the results of two decades of prospection and sampling in the Drigas and the Nivoliers quarries. We provide the first palaeontological inventory of the fossil flora, the fauna and the ichnofauna for these localities. The fossil assemblages show the co-occurrence of marine and terrestrial organisms. Marine organisms include algae, bivalves, brachiopods, cephalopods (ammonites, belemnites and coleoids such as Trachyteuthis), echinoderms, decapod crustaceans (ghost shrimps, penaeoid shrimps and glypheoid lobsters) and fishes (including several actinopterygians and a coelacanth). Terrestrial organisms consist of plant remains (conifers, bennettitaleans, pteridosperms) and a single rhynchocephalian (Kallimodon cerinensis). Ichnofossils comprise traces of marine invertebrates (e.g. limulid trackways, ammonite touch mark) as well as coprolites and regurgitalites. Given the exquisite preservation of these fossils, the two quarries can be considered as Konservat-Lagerstätten. Both lithological features and fossil content suggest a calm, protected and shallow-marine environment such as a lagoon partially or occasionally open to the sea. Most fossils are allochthonous to parautochthonous and document diverse ecological habitats. Similarly to other famous Upper Jurassic plattenkalks of western Europe such as Solnhofen, Cerin or Canjuers, the Causse Méjean is a key landmark for our understanding of coastal/lagoonal palaeoecosystems during the Kimmeridgian–Tithonian interval.


2022 ◽  
Vol 159 (2) ◽  
pp. 177-178
Author(s):  
Sarbani Patranabis-Deb

2022 ◽  
pp. 1-35
Author(s):  
Wei Xie ◽  
Qing-Dong Zeng ◽  
Jin-Hui Yang ◽  
Rui Li ◽  
Zhuang Zhang ◽  
...  

Abstract Extensive magmatism in NE China, eastern Central Asian Orogenic Belt, has produced multi-stage granitic plutons and accompanying W mineralization. The Narenwula complex in the southwestern Great Xing’an Range provides important insights into the petrogenesis, geodynamic processes and relationship with W mineralization. The complex comprises granodiorites, monzogranites and granite porphyry. Mafic microgranular enclaves are common in the granodiorites, and have similar zircon U–Pb ages as their host rocks (258.5–253.9 Ma), whereas the W-bearing granitoids yield emplacement ages of 149.8–148.1 Ma. Permian granodiorites are I-type granites that are enriched in large-ion lithophile elements and light rare earth elements, and depleted in high field strength elements and heavy rare earth elements. Both the mafic microgranular enclaves and granodiorites have nearly identical zircon Hf isotopic compositions. The results suggest that the mafic microgranular enclaves and granodiorites formed by the mixing of mafic and felsic magmas. W-bearing granitoids are highly fractionated A-type granites, enriched in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti and Eu. They have higher W concentrations and Rb/Sr ratios, and lower Nb/Ta, Zr/Hf and K/Rb ratios than the W-barren granodiorites. These data and negative ϵHf(t) values (–6.0 to –2.1) suggest that they were derived from the partial melting of ancient lower crust and subsequently underwent extreme fractional crystallization. Based on the regional geology, we propose that the granodiorites were generated in a volcanic arc setting related to the subduction of the Palaeo-Asian Ocean, whereas the W-bearing granitoids and associated deposits formed in a post-orogenic extensional setting controlled by the Mongol–Okhotsk Ocean and Palaeo-Pacific Ocean tectonic regimes.


2021 ◽  
pp. 1-12
Author(s):  
Peter L. Falkingham ◽  
Susannah C. R. Maidment ◽  
Jens N. Lallensack ◽  
Jeremy E. Martin ◽  
Guillaume Suan ◽  
...  

Abstract Evidence of Late Triassic large tetrapods from the UK is rare. Here, we describe a track-bearing surface located on the shoreline near Penarth, south Wales, United Kingdom. The total exposed surface is c. 50 m long and c. 2 m wide, and is split into northern and southern sections by a small fault. We interpret these impressions as tracks, rather than abiogenic sedimentary structures, because of the possession of marked displacement rims and their relationship to each other with regularly spaced impressions forming putative trackways. The impressions are large (up to c. 50 cm in length), but poorly preserved, and retain little information about track-maker anatomy. We discuss alternative, plausible, abiotic mechanisms that might have been responsible for the formation of these features, but reject them in favour of these impressions being tetrapod tracks. We propose that the site is an additional occurrence of the ichnotaxon Eosauropus, representing a sauropodomorph trackmaker, thereby adding a useful new datum to their sparse Late Triassic record in the UK. We also used historical photogrammetry to digitally map the extent of site erosion during 2009–2020. More than 1 m of the surface exposure has been lost over this 11-year period, and the few tracks present in both models show significant smoothing, breakage and loss of detail. These tracks are an important datapoint for Late Triassic palaeontology in the UK, even if they cannot be confidently assigned to a specific trackmaker. The documented loss of the bedding surface highlights the transient and vulnerable nature of our fossil resources, particularly in coastal settings, and the need to gather data as quickly and effectively as possible.


2021 ◽  
pp. 1-17
Author(s):  
Marco Mercuri ◽  
Luca Smeraglia ◽  
Manuel Curzi ◽  
Stefano Tavani ◽  
Roberta Maffucci ◽  
...  

Abstract Bedding-perpendicular joints striking parallel (longitudinal) and perpendicular (transverse) to both the axis of the hosting anticline and the trend of the foredeep-belt system are widely recognized in fold-and-thrust belts. Their occurrence has been commonly attributed to folding-related processes, such as syn-folding outer-arc extension, although they can also be consistent with a pre-folding foredeep-related fracturing stage. Here we report the pre-folding fracture pattern affecting the Pietrasecca Anticline, in the central Apennines (Italy), resolved by a detailed field structural analysis. Field observations, scan-lines and interpretation of virtual outcrops were used to study the intensity, distribution and the orientations of fracture pattern along the anticline. The fracture pattern of the Pietrasecca Anticline consists of longitudinal and transverse joints, oriented approximately perpendicular to bedding, and of a pre-folding longitudinal pressure-solution cleavage set, which is oblique to bedding regardless of the bedding dip. Cross-cutting relationships show that joints predated the development of the pressure-solution cleavage. Furthermore, joint intensity does not relate to the structural position along the anticline. Taken together, these observations suggest that jointing occurred in a foredeep environment before the Pietrasecca Anticline growth. Our work further demonstrates that joints striking parallel and orthogonal to the main fold axis do not necessarily represent syn-folding deformation structures.


2021 ◽  
pp. 1-24
Author(s):  
L. Massaro ◽  
J. Adam ◽  
E. Jonade ◽  
Y. Yamada

Abstract In this study, we present a new granular rock-analogue material (GRAM) with a dynamic scaling suitable for the simulation of fault and fracture processes in analogue experiments. Dynamically scaled experiments allow the direct comparison of geometrical, kinematical and mechanical processes between model and nature. The geometrical scaling factor defines the model resolution, which depends on the density and cohesive strength ratios of model material and natural rocks. Granular materials such as quartz sands are ideal for the simulation of upper crustal deformation processes as a result of similar nonlinear deformation behaviour of granular flow and brittle rock deformation. We compared the geometrical scaling factor of common analogue materials applied in tectonic models, and identified a gap in model resolution corresponding to the outcrop and structural scale (1–100 m). The proposed GRAM is composed of quartz sand and hemihydrate powder and is suitable to form cohesive aggregates capable of deforming by tensile and shear failure under variable stress conditions. Based on dynamical shear tests, GRAM is characterized by a similar stress–strain curve as dry quartz sand, has a cohesive strength of 7.88 kPa and an average density of 1.36 g cm−3. The derived geometrical scaling factor is 1 cm in model = 10.65 m in nature. For a large-scale test, GRAM material was applied in strike-slip analogue experiments. Early results demonstrate the potential of GRAM to simulate fault and fracture processes, and their interaction in fault zones and damage zones during different stages of fault evolution in dynamically scaled analogue experiments.


2021 ◽  
pp. 1-16
Author(s):  
Stewart D Redwood ◽  
David M Buchs ◽  
David Edward Cavell

Abstract An extensive deposit of agate occurs in Pedro González Island in the Gulf of Panama. Previous archaeological research showed that the agate was exploited between 6200 and 5600 cal BP to make stone tools found at the oldest known Preceramic human settlement in the Pearl Island archipelago. We constrain here the origin and geological context of the agate through a geological and geochemical study of the island. We show that it includes primary volcanic breccias, lavas, and tuffaceous marine deposits with sedimentary conglomerates and debris flow deposits, which we define as the Pedro González Formation. This formation records submarine to subaerial volcanic activity along an island arc during the Oligo-Miocene, confirming previous regional models that favour progressive emergence of the isthmus in the early Miocene. The igneous rocks have an extreme tholeiitic character that is interpreted to reflect magmatic cessation in eastern Panama during the early Miocene. The agate is hosted in andesitic lavas in unusually large amygdales up to 20–40 cm in diameter, as well as small amygdales (0.1–1.0 cm) in a bimodal distribution, and in veins. The large size of the agates made them suitable for tool manufacture. Field evidence suggests that the formation of large amygdales resulted from subaqueous lava–sediment interaction, in which water released from unconsolidated tuffaceous deposits at the base of lava flows rose through the lavas, coalesced, and accumulated below the chilled lava top, with subsequent hydrothermal mineralization. These amygdales could therefore be regarded as an unusual result of combined peperitic and hydrothermal processes.


Sign in / Sign up

Export Citation Format

Share Document