scholarly journals Supplemental Material: Stratigraphy, age, and provenance of the Eocene Chumstick basin, Washington Cascades; implications for paleogeography, regional tectonics, and development of strike-slip basins

2021 ◽  
Author(s):  
Erin E. Donaghy ◽  
et al.

(1) Descriptions of spatial and temporal stratigraphic thickness variations in the Chumstick basin and methods for sediment accumulation rate calculations, (2) Detailed descriptions and photographs of each lithofacies association of the Chumstick Formation defined in the text of the manuscript, (3) Tables of raw and summary conglomerate clast count data for each member of the Chumstick Formation, (4) Summary tables of conglomerate detrital modes for each member of the Chumstick Formation, (5) Summary tables and age probability plots of detrital zircon ages from each sandstone sample collected within the Chumstick Formation, (6) Conglomerate clast raw data from LaCasse (2013) and (7) Tables of detrital zircon raw data from each individual sandstone sample within the Chumstick Formation (Donaghy, 2015).

2021 ◽  
Author(s):  
Erin E. Donaghy ◽  
et al.

(1) Descriptions of spatial and temporal stratigraphic thickness variations in the Chumstick basin and methods for sediment accumulation rate calculations, (2) Detailed descriptions and photographs of each lithofacies association of the Chumstick Formation defined in the text of the manuscript, (3) Tables of raw and summary conglomerate clast count data for each member of the Chumstick Formation, (4) Summary tables of conglomerate detrital modes for each member of the Chumstick Formation, (5) Summary tables and age probability plots of detrital zircon ages from each sandstone sample collected within the Chumstick Formation, (6) Conglomerate clast raw data from LaCasse (2013) and (7) Tables of detrital zircon raw data from each individual sandstone sample within the Chumstick Formation (Donaghy, 2015).


2020 ◽  
Author(s):  
Ben Pears

S1–S16; Figures S1 (sediment accumulation rate modeled by OxCal and Bacon) and S2 (relative moisture values between OSL and LOI analytical methods); Table S1 (OSL procedure from the Rivers Severn-Teme confluence at Powick, UK); and Data Sets S1 (raw data for the modeled calendric dates, sediment accumulation rate, and sedimentological analyses), S2 (raw and log normalized data for ITRAX XRF analysis and key elements Zr, Rb, Fe, Mn, and heavy metals illustrated in Fig. 2), S3 (individual raw data sets for each 5 cm pOSL run alongside a background sediment sample and a summary sheet of all data and replicates), S4 (raw data, log normalized data, and statistical analysis used in the agglomerative hierarchical cluster analysis illustrated in Fig, 2), S5 (calculated log data of sedimentary analyses by 50 yr period and the statistical analysis used in the principal component analysis illustrated in Fig. 3), and S6 (20 yr grouping for the sediment deposition models for the Severn-Teme confluence at Powick, Broadwas, and Buildwas and climatic datasets illustrated in Fig. 4)<br>


2022 ◽  
Author(s):  
Haijian Lu ◽  
et al.

Supplemental dataset: Detrital zircon U-Pb ages of the sandstone samples from the Lulehe and Hongshangou sections; Figure S1: SEM images of 129 grains from sandstone sample LLH-1 showing grain roundness characteristics; Figure S2: SEM images of 140 grains from sandstone sample LLH-2 showing grain roundness characteristics; Figure S3: SEM images of 123 grains from sandstone sample LLH-3 showing grain roundness characteristics; Figure S4: SEM images of 122 grains from sandstone sample HSG-7 showing grain roundness characteristics; Figure S5: SEM images of 123 grains from sandstone sample HSG-8 showing grain roundness characteristics; Figure S6: SEM images of 123 grains from sandstone sample HSG-9 showing grain roundness characteristics; Figure S7: SEM images of representative grains from the Lulehe and Hongshangou sections showing surface microtextures.


2020 ◽  
Author(s):  
Ben Pears

S1–S16; Figures S1 (sediment accumulation rate modeled by OxCal and Bacon) and S2 (relative moisture values between OSL and LOI analytical methods); Table S1 (OSL procedure from the Rivers Severn-Teme confluence at Powick, UK); and Data Sets S1 (raw data for the modeled calendric dates, sediment accumulation rate, and sedimentological analyses), S2 (raw and log normalized data for ITRAX XRF analysis and key elements Zr, Rb, Fe, Mn, and heavy metals illustrated in Fig. 2), S3 (individual raw data sets for each 5 cm pOSL run alongside a background sediment sample and a summary sheet of all data and replicates), S4 (raw data, log normalized data, and statistical analysis used in the agglomerative hierarchical cluster analysis illustrated in Fig, 2), S5 (calculated log data of sedimentary analyses by 50 yr period and the statistical analysis used in the principal component analysis illustrated in Fig. 3), and S6 (20 yr grouping for the sediment deposition models for the Severn-Teme confluence at Powick, Broadwas, and Buildwas and climatic datasets illustrated in Fig. 4)<br>


2022 ◽  
Author(s):  
Haijian Lu ◽  
et al.

Supplemental dataset: Detrital zircon U-Pb ages of the sandstone samples from the Lulehe and Hongshangou sections; Figure S1: SEM images of 129 grains from sandstone sample LLH-1 showing grain roundness characteristics; Figure S2: SEM images of 140 grains from sandstone sample LLH-2 showing grain roundness characteristics; Figure S3: SEM images of 123 grains from sandstone sample LLH-3 showing grain roundness characteristics; Figure S4: SEM images of 122 grains from sandstone sample HSG-7 showing grain roundness characteristics; Figure S5: SEM images of 123 grains from sandstone sample HSG-8 showing grain roundness characteristics; Figure S6: SEM images of 123 grains from sandstone sample HSG-9 showing grain roundness characteristics; Figure S7: SEM images of representative grains from the Lulehe and Hongshangou sections showing surface microtextures.


2020 ◽  
Author(s):  
Ben Pears

S1–S16; Figures S1 (sediment accumulation rate modeled by OxCal and Bacon) and S2 (relative moisture values between OSL and LOI analytical methods); Table S1 (OSL procedure from the Rivers Severn-Teme confluence at Powick, UK); and Data Sets S1 (raw data for the modeled calendric dates, sediment accumulation rate, and sedimentological analyses), S2 (raw and log normalized data for ITRAX XRF analysis and key elements Zr, Rb, Fe, Mn, and heavy metals illustrated in Fig. 2), S3 (individual raw data sets for each 5 cm pOSL run alongside a background sediment sample and a summary sheet of all data and replicates), S4 (raw data, log normalized data, and statistical analysis used in the agglomerative hierarchical cluster analysis illustrated in Fig, 2), S5 (calculated log data of sedimentary analyses by 50 yr period and the statistical analysis used in the principal component analysis illustrated in Fig. 3), and S6 (20 yr grouping for the sediment deposition models for the Severn-Teme confluence at Powick, Broadwas, and Buildwas and climatic datasets illustrated in Fig. 4)<br>


2017 ◽  
Author(s):  
Alexander Tye ◽  
◽  
Nathan A. Niemi ◽  
Rafiq Safarov ◽  
Fakhraddin Kadirov

Sign in / Sign up

Export Citation Format

Share Document