sediment accumulation rate
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Kenneth P. Kodama

A combined magnetostratigraphy for the Rainstorm Member of the Ediacaran Johnnie Formation was constructed using the sediment accumulation rates determined by rock magnetic cyclostratigraphy for three localities of the Rainstorm Member to provide a high resolution, time-calibrated record of geomagnetic field reversal frequency at a critical time period in Earth history. Two previously reported magnetostratigraphy records from Death Valley, California, the Nopah Range and Winters Pass Hills (Minguez et al., 2015), were combined with new paleomagnetic and cyclostratigraphic results from the Desert Range locality of the Rainstorm Member in south central Nevada, United States . The Johnnie oolite marker bed is at the base of each of the three sections and allows their regional correlation. The Nopah Range and Desert Range localities have similar sediment accumulation rates of ∼5 cm/ka, so their stratigraphic sections can be combined directly. The Winters Pass Hills locality has a higher sediment accumulation rate of 8.4 cm/ka, therefore its stratigraphic positions are multiplied by 0.6 to combine with the Desert Range and Nopah Range magnetostratigraphy. The thermal demagnetization results from the Desert Range locality isolates characteristic remanent magnetizations that indicate two nearly antipodal east-west and shallow directions and a mean paleopole (11.7˚N, 348.4˚E) that is consistent with “shallow” Ediacaran directions. The Desert Range also yields a magnetic susceptibility rock magnetic cyclostratigraphy that records short eccentricity, obliquity, and precession astronomically-forced climate cycles in the Ediacaran. The high-resolution combined magnetostratigraphy with nearly meter-scale stratigraphic spacing (nominally 23 ka, based on the Desert Range sediment accumulation rate), indicates 11 polarity intervals in a cyclostratigraphy-calibrated duration of 849 ka, indicating a reversal frequency of 13 R/Ma. The Rainstorm Member records the Shuram carbon isotope excursion, hence its age is ∼574 Ma. Given the recent cyclostratigraphy-calibrated reversal frequency of 20 R/Ma from the Zigan Formation (Levashova et al., 2021) at 547 Ma, our results show that reversal frequency was high but fluctuated during the Ediacaran.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hamdi Omar ◽  
Anne-Christine Da Silva ◽  
Chokri Yaich

High-resolution magnetic susceptibility and % CaCO3 records (5 to 10 cm sampling interval) are used to track astronomical cycles from a Lower Berriasian record from central Tunisia. Six hundred and twenty two samples were measured for magnetic susceptibility and carbonate content as paleoclimate proxies for the detection of potential Milankovitch cycles. Elemental data using X-Ray fluorescence analyses was acquired from 19 samples to prove the reliability of the MS signal on recording the past paleoclimatic changes. We performed multiple spectral analyses and statistical techniques on the magnetic susceptibility signal, such as Multi-taper Method, Evolutive Harmonic Analysis, Correlation Coefficient, Time-optimization, and Average Spectral Misfit to obtain an optimal astronomical model. The application of these spectral analysis techniques revealed a pervasive dominance of E405-kyr and e100-kyr cycles showing that the climate turnover across the early Berriasian—middle Berriasian seems to had been governed by the long and short orbital eccentricity cycles. The identification of Milankovitch cycles in the record also allowed to propose a floating astronomical timescale of the studied section, with ~4 long eccentricity cycles (E405) extracted, which points to a duration estimate of ~1.6 Myr with an average sediment accumulation rate (SAR, after compaction) of 2.77 cm/kyr. The inferred floating ATS was tuned to the La2004 astronomical solution. In addition, we applied the DYNOT and ρ1 methods for seal-level change modeling to reconstruct a local eustatic profile which matches the previously published local and global eustatic charts.


Author(s):  
M. Fojutowski ◽  
P. Gierszewski ◽  
D. Brykała ◽  
A. Bonk ◽  
M. Błaszkiewicz ◽  
...  

Weather conditions and lake basin morphometry are of key importance in the study of sediment accumulation rate in lakes. This study aims to determine how these factors affect spatial and seasonal variations in sedimentation rate in the epilimnion and hypolimnion of Lake Gościąż. To determine sedimentation rates, six sedimentation traps were set up at different locations and depths in the lake. Weather data were obtained from a meteorological station near the lake. Furthermore, temperature in the lake water column was measured continuously, and during field work oxygenation and transparency were also measured. Seasonal changes in sediment composition were analyzed on smear slides under microscope. The study showed that sedimentation rate increased as bottom steepness increased, and that there was more sediment in the hypolimnion than the epilimnion, especially in spring and autumn. There was a clear seasonal variation in early-spring and autumn peaks in sedimentation. The obtained results were significantly dependent on bottom relief, wind and air temperature through these factors’ influence on water temperature. The results show that the sediment accumulation rate in Lake Gościąż depends on the hydrodynamic conditions, which are determined by wind speed, wind direction, water temperature, and the shape and steepness of the lake basin. The relief features of the lake bottom and its orientation relative to the prevailing wind are significant factors in the spatial differentiation in sediment accumulation rate and composition of sedimenting material. It has been shown that the lake’s shallow-water zone (littoral and sublittoral) is an important source of the material accumulated in the profundal zone. The patterns and mechanisms of the course of contemporary sedimentation in Lake Gościąż, as determined based on the conducted investigations, can be applied in the study of other lakes and in assessing the representativeness of sampling sites for laminated bottom sediments to be used in palaeo-environmental studies.


Author(s):  
Cornelia Rasmussen ◽  
Roland Mundil ◽  
Randall B. Irmis ◽  
Dominique Geisler ◽  
George E. Gehrels ◽  
...  

The Upper Triassic Chinle Formation is a critical non-marine archive of low-paleolatitude biotic and environmental change in southwestern North America. The well-studied and highly fossiliferous Chinle strata at Petrified Forest National Park (PFNP), Arizona, preserve a biotic turnover event recorded by vertebrate and palynomorph fossils, which has been alternatively hypothesized to coincide with tectonically driven climate change or with the Manicouagan impact event at ca. 215.5 Ma. Previous outcrop-based geochronologic age constraints are difficult to put in an accurate stratigraphic framework because lateral facies changes and discontinuous outcrops allow for multiple interpretations. A major goal of the Colorado Plateau Coring Project (CPCP) was to retrieve a continuous record in unambiguous superposition designed to remedy this situation. We sampled the 520-m-long core 1A of the CPCP to develop an accurate age model in unquestionable superposition by combining U-Pb zircon ages and magnetostratigraphy. From 13 horizons of volcanic detritus-rich siltstone and sandstone, we screened up to ∼300 zircon crystals per sample using laser ablation−inductively coupled plasma−mass spectrometry and subsequently analyzed up to 19 crystals of the youngest age population using the chemical abrasion−isotope dilution−thermal ionization mass (CA-ID-TIMS) spectrometry method. These data provide new maximum depositional ages for the top of the Moenkopi Formation (ca. 241 Ma), the lower Blue Mesa Member (ca. 222 Ma), and the lower (ca. 218 to 217 Ma) and upper (ca. 213.5 Ma) Sonsela Member. The maximum depositional ages obtained for the upper Chinle Formation fall well within previously proposed age constraints, whereas the maximum depositional ages for the lower Chinle Formation are relatively younger than previously proposed ages from outcrop; however, core to outcrop stratigraphic correlations remain uncertain. By correlating our new ages with the magnetostratigraphy of the core, two feasible age model solutions can be proposed. Model 1 assumes that the youngest, coherent U-Pb age clusters of each sample are representative of the maximum depositional ages and are close to (<1 Ma difference) the true time of deposition throughout the Sonsela Member. This model suggests a significant decrease in average sediment accumulation rate in the mid-Sonsela Member. Hence, the biotic turnover preserved in the mid-Sonsela Member at PFNP is also middle Norian in age, but may, at least partially, be an artifact of a condensed section. Model 2 following the magnetostratigraphic-based age model for the CPCP core 1A suggests instead that the ages from the lower and middle Sonsela Member are inherited populations of zircon crystals that are 1−3 Ma older than the true depositional age of the strata. This results in a model in which no sudden decrease in sediment accumulation rate is necessary and implies that the base of the Sonsela Member is no older than ca. 216 Ma. Independent of these alternatives, both age models agree that none of the preserved Chinle Formation in PFNP is Carnian (>227 Ma) in age, and hence the biotic turnover event cannot be correlated to the Carnian−Norian boundary but is rather a mid-Norian event. Our age models demonstrate the powers, but also the challenges, of integrating detrital CA-ID-TIMS ages with magnetostratigraphic data to properly interpret complex sedimentary sequences.


2020 ◽  
Author(s):  
Ben Pears

S1–S16; Figures S1 (sediment accumulation rate modeled by OxCal and Bacon) and S2 (relative moisture values between OSL and LOI analytical methods); Table S1 (OSL procedure from the Rivers Severn-Teme confluence at Powick, UK); and Data Sets S1 (raw data for the modeled calendric dates, sediment accumulation rate, and sedimentological analyses), S2 (raw and log normalized data for ITRAX XRF analysis and key elements Zr, Rb, Fe, Mn, and heavy metals illustrated in Fig. 2), S3 (individual raw data sets for each 5 cm pOSL run alongside a background sediment sample and a summary sheet of all data and replicates), S4 (raw data, log normalized data, and statistical analysis used in the agglomerative hierarchical cluster analysis illustrated in Fig, 2), S5 (calculated log data of sedimentary analyses by 50 yr period and the statistical analysis used in the principal component analysis illustrated in Fig. 3), and S6 (20 yr grouping for the sediment deposition models for the Severn-Teme confluence at Powick, Broadwas, and Buildwas and climatic datasets illustrated in Fig. 4)<br>


2020 ◽  
Author(s):  
Ben Pears

S1–S16; Figures S1 (sediment accumulation rate modeled by OxCal and Bacon) and S2 (relative moisture values between OSL and LOI analytical methods); Table S1 (OSL procedure from the Rivers Severn-Teme confluence at Powick, UK); and Data Sets S1 (raw data for the modeled calendric dates, sediment accumulation rate, and sedimentological analyses), S2 (raw and log normalized data for ITRAX XRF analysis and key elements Zr, Rb, Fe, Mn, and heavy metals illustrated in Fig. 2), S3 (individual raw data sets for each 5 cm pOSL run alongside a background sediment sample and a summary sheet of all data and replicates), S4 (raw data, log normalized data, and statistical analysis used in the agglomerative hierarchical cluster analysis illustrated in Fig, 2), S5 (calculated log data of sedimentary analyses by 50 yr period and the statistical analysis used in the principal component analysis illustrated in Fig. 3), and S6 (20 yr grouping for the sediment deposition models for the Severn-Teme confluence at Powick, Broadwas, and Buildwas and climatic datasets illustrated in Fig. 4)<br>


2020 ◽  
Author(s):  
Ben Pears

S1–S16; Figures S1 (sediment accumulation rate modeled by OxCal and Bacon) and S2 (relative moisture values between OSL and LOI analytical methods); Table S1 (OSL procedure from the Rivers Severn-Teme confluence at Powick, UK); and Data Sets S1 (raw data for the modeled calendric dates, sediment accumulation rate, and sedimentological analyses), S2 (raw and log normalized data for ITRAX XRF analysis and key elements Zr, Rb, Fe, Mn, and heavy metals illustrated in Fig. 2), S3 (individual raw data sets for each 5 cm pOSL run alongside a background sediment sample and a summary sheet of all data and replicates), S4 (raw data, log normalized data, and statistical analysis used in the agglomerative hierarchical cluster analysis illustrated in Fig, 2), S5 (calculated log data of sedimentary analyses by 50 yr period and the statistical analysis used in the principal component analysis illustrated in Fig. 3), and S6 (20 yr grouping for the sediment deposition models for the Severn-Teme confluence at Powick, Broadwas, and Buildwas and climatic datasets illustrated in Fig. 4)<br>


2020 ◽  
Vol 46 (1) ◽  
pp. 25
Author(s):  
W.A. Gemilang ◽  
U. J. Wisha ◽  
T. Solihuddin ◽  
A. Arman ◽  
K. Ondara

Sign in / Sign up

Export Citation Format

Share Document