On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem

2020 ◽  
Vol 108 (3-4) ◽  
pp. 356-369
Author(s):  
V. V. Palin
Author(s):  
Fritz Gesztesy ◽  
Helge Holden ◽  
Johanna Michor ◽  
Gerald Teschl

2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Marco Bertola

AbstractThe paper has two relatively distinct but connected goals; the first is to define the notion of Padé approximation of Weyl–Stiltjes transforms on an arbitrary compact Riemann surface of higher genus. The data consists of a contour in the Riemann surface and a measure on it, together with the additional datum of a local coordinate near a point and a divisor of degree g. The denominators of the resulting Padé-like approximation also satisfy an orthogonality relation and are sections of appropriate line bundles. A Riemann–Hilbert problem for a square matrix of rank two is shown to characterize these orthogonal sections, in a similar fashion to the ordinary orthogonal polynomial case. The second part extends this idea to explore its connection to integrable systems. The same data can be used to define a pairing between two sequences of line bundles. The locus in the deformation space where the pairing becomes degenerate for fixed degree coincides with the zeros of a “tau” function. We show how this tau function satisfies the Kadomtsev–Petviashvili hierarchy with respect to either deformation parameters, and a certain modification of the 2-Toda hierarchy when considering the whole sequence of tau functions. We also show how this construction is related to the Krichever construction of algebro-geometric solutions.


Author(s):  
Moshe Zukerman

AbstractWe consider a hybrid switch which provides integrated packet (asynchronous) and circuit (isochronous) switching. Queue size and delay distribution of the packet switched traffic in the steady state are derived by modelling the packet queue as a queue in a Markovian environment. The arrival process of the packets as well as of the circuit allocation requests are both modelled by a Poisson process. The analysis is performed for several circuit allocation policies, namely repacking, first-fit (involving static or dynamic renumbering) and best-fit. Both exact results and approximations are discussed. Numerical results are presented to demonstrate the effect of increase in packet and circuit loading on the packet delay for each of the policies.


Sign in / Sign up

Export Citation Format

Share Document