On Fourier Series on the Torus and Fourier Transforms

2021 ◽  
Vol 110 (5-6) ◽  
pp. 767-772
Author(s):  
R. M. Trigub
1980 ◽  
Vol 87 (3) ◽  
pp. 383-392
Author(s):  
Alan MacLean

It has long been known, after Wiener (e.g. see (11), vol. 1, p. 108, (5), (8), §5·6)) that a measure μ whose Fourier transform vanishes at infinity is continuous, and generally, that μ is continuous if and only if is small ‘on the average’. Baker (1) has pursued this theme and obtained concise necessary and sufficient conditions for the continuity of μ, again expressed in terms of the rate of decrease of . On the other hand, for continuous μ, Rudin (9) points out the difficulty in obtaining criteria based solely on the asymptotic behaviour of by which one may determine whether μ has a singular component. The object of this paper is to show further that any such criteria must be complicated indeed. We shall show that the absolutely continuous measures on T = [0, 2π) whose Fourier transforms are the most well-behaved (namely, those of the form (1/2π)f(x)dx, where f has an absolutely convergent Fourier series) are such that one may modify their transforms on ‘large’ subsets of Z so that they become the transforms of singular continuous measures. Moreover, the singular continuous measures in question may be chosen so that their Fourier transforms do not vanish at infinity.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ferenc Weisz

We characterize the set of functions for which strong summability holds at each Lebesgue point. More exactly, iffis in the Wiener amalgam spaceW(L1,lq)(R)andfis almost everywhere locally bounded, orf∈W(Lp,lq)(R)  (1<p<∞,1≤q<∞), then strongθ-summability holds at each Lebesgue point off. The analogous results are given for Fourier series, too.


Sign in / Sign up

Export Citation Format

Share Document