Approximate determination of the stability domain of a linear delay differential equation with periodic coefficient

2006 ◽  
Vol 42 (4) ◽  
pp. 612-614
Author(s):  
L. Z. Fishman
2013 ◽  
Vol 785-786 ◽  
pp. 1418-1422
Author(s):  
Ai Gao

In this paper, we provide a partition of the roots of a class of transcendental equation by using τ-D decomposition ,where τ>0,a>0,b<0 and the coefficient b is fixed.According to the partition, one can determine the stability domain of the equilibrium and get a Hopf bifurcation diagram that can provide the Hopf bifurcation curves in the-parameter space, for one dimension delay differential equation .


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2069
Author(s):  
Anton V. Kovalev ◽  
Evgeny A. Viktorov ◽  
Thomas Erneux

In 1965, Statz et al. (J. Appl. Phys. 30, 1510 (1965)) investigated theoretically and experimentally the conditions under which spiking in the laser output can be completely suppressed by using a delayed optical feedback. In order to explore its effects, they formulate a delay differential equation model within the framework of laser rate equations. From their numerical simulations, they concluded that the feedback is effective in controlling the intensity laser pulses provided the delay is short enough. Ten years later, Krivoshchekov et al. (Sov. J. Quant. Electron. 5394 (1975)) reconsidered the Statz et al. delay differential equation and analyzed the limit of small delays. The stability conditions for arbitrary delays, however, were not determined. In this paper, we revisit Statz et al.’s delay differential equation model by using modern mathematical tools. We determine an asymptotic approximation of both the domains of stable steady states as well as a sub-domain of purely exponential transients.


In this article the authors established sufficient condition for the first order delay differential equation in the form , ( ) where , = and is a non negative piecewise continuous function. Some interesting examples are provided to illustrate the results. Keywords: Oscillation, delay differential equation and bounded. AMS Subject Classification 2010: 39A10 and 39A12.


Author(s):  
М.Г. Мажгихова

Методом функции Грина получено решение задачи Стеклова первого класса для линейного уравнения с дробной производной Герасимова-Капуто с запаздывающим аргументом. Доказана теорема существования и единственности задачи. The solution to the Steklov problem with conditions of the first class for a linear delay differential equation with a Gerasimov-Caputo fractional derivative is obtained by Green function method. The existence and uniqueness theorem to the problem is proved.


Sign in / Sign up

Export Citation Format

Share Document