On the numerical method for solving a hypersingular integral equation with the computation of the solution gradient

2013 ◽  
Vol 49 (9) ◽  
pp. 1168-1175
Author(s):  
G. V. Ryzhakov
Author(s):  
С.Г. Даева ◽  
А.В. Сетуха

Предложена численная схема решения граничного гиперсингулярного интегрального уравнения, возникающего в краевой задаче Неймана для уравнения Гельмгольца. Схема основана на выделении в явном виде главной особенности в ядре. При дискретизации граничного интегрального уравнения возникает система линейных уравнений, коэффициенты которой представляются в виде суммы сильно сингулярных и слабо сингулярных интегралов. Указанные сильно сингулярные интегралы понимаются в смысле конечного значения по Адамару и вычисляются аналитически в случае, когда поверхность аппроксимируется ячейками таким образом, что края всех ячеек имеют вид пространственных многоугольников (не обязательно плоских). Для слабосингулярных интегралов предложены квадратурные формулы типа прямоугольников со сглаживанием особенности. Построенная численная схема протестирована на следующих модельных примерах: при решении гиперсингулярного уравнения на сфере (осуществлялось сравнение численных решений с аналитическими решениями интегрального уравнения, получаемыми из спектральных соотношений); при решении задач дифракции акустической волны на жестких сфере и диске (осуществлялось сравнение характеристик акустического поля в дальней зоне, полученных на основе численного решения задачи, с известными теоретическими и численными данными). A numerical method for solving a boundary hypersingular integral equation arising from the Neumann boundary value problem for the Helmholtz equation is proposed. The proposed numerical method is based on the explicit separation of the hypersingular main part in the kernel of the integral equation. After discretization, this boundary integral equation is reduced to a system of linear algebraic equations. The coefficients of this system are represented as the sums of hypersingular and weakly singular integrals. The hypersingular integrals are understood in the sense of the finite Hadamard value and are calculated analytically. A number of quadrature formulas for the weakly singular integrals are developed using the smoothing procedures for singularity. The proposed numerical scheme is tested on the basis of the following model examples: a hypersingular integral equation on a sphere and the problems of diffraction of acoustic waves on inelastic spheres and discs. The numerical solutions obtained are compared with existing analytical and numerical data.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Nik Mohd Asri Nik Long ◽  
Lee Feng Koo ◽  
Zainidin K. Eshkuvatov

This paper deals with a nearly circular crack, in the plane elasticity. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over a considered domain, and it is then transformed into a similar equation over a circular region, , using conformal mapping. Appropriate collocation points are chosen on the region to reduce the hypersingular integral equation into a system of linear equations with unknown coefficients, which will later be used in the determination of energy release rate. Numerical results for energy release rate are compared with the existing asymptotic solution and are displayed graphically.


Sign in / Sign up

Export Citation Format

Share Document