energy release rates
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 41)

H-INDEX

33
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1960
Author(s):  
Alexander Khaimovich ◽  
Yaroslav Erisov ◽  
Anton Agapovichev ◽  
Igor Shishkovsky ◽  
Vitaliy Smelov ◽  
...  

This study concerns the key problem of determining the conditions for the consolidation or fracture of bimetallic compounds and high-gradient materials with different coefficients of thermal expansion. The well-known approach to determining the strength is based on the assessment of the critical energy release rates during fracture, depending on the conditions of loading (the portion of shear loading). Unfortunately, most of the experimental results cannot be used directly to select suitable fracture toughness criteria before such a connection is made. This especially applies to the region of interphase interaction, when it is required to estimate the internal energy of destruction accumulated during the preparation of the joint in the adhesion layer within the range of 20–50 μm. Hence, criteria for the adhesive consolidation of bimetallic compound layers were obtained on the basis of the thermodynamics of nonequilibrium processes. The analysis of the quality of the joint using the obtained criteria was carried out on the basis of the calculation of isochoric and isobaric heat capacities and coefficients of thermal expansion of multiphase layers. The applicability of the criteria for the qualitative assessment of the adhesion of layers is demonstrated in the example of bimetallic joints of steel 316L—aluminum alloy AlSi10Mg obtained by the SLM method at various fusion modes.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3926
Author(s):  
Andreas Hornig ◽  
Anja Winkler ◽  
Eric Bauerfeind ◽  
Maik Gude ◽  
Niels Modler

Fiber reinforced composites combine low density with high specific mechanical properties and thus became indispensable for today’s lightweight applications. In particular, carbon fibre reinforced plastic (CFRP) is broadly used for aerospace components. However, damage and failure behaviour, especially for complex fibre reinforcement set-ups and under impact loading conditions, are still not fully understood yet. Therefore, relatively large margins of safety are currently used for designing high-performance materials and structures. Technologies to functionalise the materials enabling the monitoring of the structures and thus avoiding critical conditions are considered to be key to overcoming these drawbacks. For this, sensors and actuators are bonded to the surface of the composite structures or are integrated into the composite lay-up. In case of integration, the impact on the mechanical properties of the composite materials needs to be understood in detail. Additional elements may disturb the composite structure, impeding the direct connection of the composite layers and implying the risk of reducing the interlaminar integrity by means of a lower delamination resistance. In the presented study, the possibility of adjusting the interface between the integrated actuator and sensor layers to the composite layers is investigated. Different polymer layer combinations integrated into carbon fibre reinforced composite layups are compared with respect to their interlaminar critical energy release rates GIc and GIIc. A standard aerospace unidirectionally reinforced (UD) CFRP prepreg material was used as reference material configuration. The investigations show that it is possible to enhance the mechanical properties, especially the interlaminar energy release rate by using multilayered sensor–actuator layers with Polyimide (PI) outer layers and layers with low shear stiffness in between.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6616
Author(s):  
Kun Zhong ◽  
Wusheng Zhao ◽  
Changkun Qin ◽  
Weizhong Chen

The study of the mechanical properties and failure behaviors for coal with different bedding structures at various medium strain rates is of great importance for revealing the mechanism of rock burst. In our study, we systematically analyze the uniaxial compressive strength (UCS), acoustic emission (AE) characteristics, failure pattern, and risk of rock burst on coal specimens with two bedding orientations under ranged in strain rates from 10−4 s−1 to 10−2 s−1. The results reflect that and the bedding direction and the strain rates significantly affect the UCS and failure modes of coal specimens. The UCS of coal specimens with loading directions perpendicular to bedding planes (horizontal bedding) increases logarithmically with increasing strain rate while the UCS increases first and then decreases of coal specimens with loading directions parallel to bedding planes (vertical bedding). The AE cumulative energy of the specimens with horizontal bedding is an order of magnitude higher than that of specimens with vertical bedding. However, it is independent of the strain rates. The energy release rates of these two types of bedded coal specimens increase in a power function as the strain rate increases. The coal specimens with horizontal bedding show violent failure followed by the ejection of fragments, indicating a high risk of rock burst. On the other hand, the coal specimens with vertical bedding exhibit a tensile splitting failure with a low risk of rock burst. Strain localization is a precursor of coal failure, and the concentration area of local principal strain is highly consistent with the initial damage area, and the area where the principal strain gradient is significantly increased corresponds to the fracture initiation area.


2021 ◽  
Author(s):  
Kazuaki Inaba ◽  
Ibuki Mashio

Abstract To model the peeling phenomenon during cataract surgery and examine the effect of fluid flow during surgery, we constructed a simplified physical system and compared the case where only static pressure is applied to the adhesive thin film and the case where water flow is applied to the film by suction. From experiments with and without suctioning, the energy release rates of the adhesive thin film were calculated to be approximately 10 N/m, and no significant difference was confirmed with or without suction. We modeled the peeling phenomenon using the cohesive damage model and performed a finite element analysis considering the coupling of the fluid and membrane. The simulation results without suction were in good agreement with the theoretical values of the stress and deflection. When the water flow was applied to collide with the peeling part, the film deflection at the center became smaller, and the radial and circumferential stresses became smaller. From this result, it is shown that the stress acting on the membrane surrounding the crystalline lens can be reduced and peeling can be performed by successfully using the water flow for peeling.


2021 ◽  
Author(s):  
Omar Rodríguez

To tackle the current drawbacks with metallic implants used in direct skeletal attachment, novel bioactive glasses are considered as implant coatings in order to reduce bacterial infections and promote bone cell growth. Silica-based and borate-based glasses, with increasing amounts of titanium dioxide at the expense of either silica (for the silica-based glasses) or borate (for the borate-based glasses), respectively, were synthesized and characterized to determine the parameters that define a glass capable of inhibiting bacterial growth, stimulating cell proliferation and offering mechanical stability when enameled into a surgical alloy. The effect of substituting the glass backbone with titanium dioxide, in both glass series, is also investigated with respect to its effect on both biocompatibility and mechanical properties of the resultant glass/implant constructs. Borate-based glasses exhibited greater processing windows compared to the silica-based glasses, making them more desirable for coating applications. They also exhibited superior performance in terms of their in vitro bioactivity and biocompatibility, over their silica-based counterparts, due to their higher solubility and greater ability to inhibit S. epidermidis and E. coli bacteria. Specifically, glass BRT0 (control borate-based glass, with no titanium incorporated) exhibited an inhibition zone against S. epidermidis of 17.5 mm and a mass loss of 40% after 30 days, with BRT3 (borate-based glass, with 15 mol% titanium incorporated) exhibiting an inhibition zone against S. epidermidis of 7.6 mm and a mass loss of 34% after 30 days. Furthermore, borate-based glasses with greater titanium dioxide contents exhibited superior mechanical properties (e.g. bulk hardness, and critical strain energy release rates), which could be attributed to their more closely matched coefficients of thermal expansion with the titanium alloy substrate, Ti6Al4V, to which they were adhered. The critical strain energy release rates in mode I for the silica-based coating/substrate system ranged from 6.2 J/m2 (for SRT0, control silica-based glass with no titanium) to 12.08 J/m2 (for SRT3), whereas for the borate-based systems they ranged from 10.86 J/m2 (for BRT0) to 18.5 J/m2 (for BRT3), with the increase for the borate-based glasses being attributed to the presence of compressive residual stresses in the coating after application.


Sign in / Sign up

Export Citation Format

Share Document