hypersingular integral equation
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2142 (1) ◽  
pp. 012002
Author(s):  
S G Daeva ◽  
A L Beskin ◽  
N N Trokhachenkova

Abstract Some problems of diffraction of a monochromatic acoustic wave on surfaces of complex shapes are considered. To solve such problems, an approach is applied, in which the problem is reduced to a boundary hypersingular integral equation, where the integral is understood in the sense of a finite value according to Hadamard. Such approach allows solving diffraction problems both on solid objects and on thin screens. To solve the integral equation, the method of piecewise constant approximations and collocations, developed in the previous works of the author, is used. In the present study, examples of modeling the diffraction of an acoustic wave by bodies with partial filling are given. It is shown how the filling of bodies influences the acoustic pressure field, and the field direction patterns are given. An example of applying this approach to solving the problem of sound propagation in an urban area is also given: the diffraction of an acoustic wave from a point source on a system of buildings is considered. The presented results demonstrate that this method allows constructing reflected fields and analyze their characteristics on surfaces of complex shapes.


2021 ◽  
Vol 26 (2) ◽  
pp. 223-235
Author(s):  
Rupanwita Gayen ◽  
Sourav Gupta ◽  
Aloknath Chakrabarti

An alternative approach is proposed here to investigate the problem of scattering of surface water waves by a vertical permeable plate submerged in deep water within the framework of linear water wave theory. Using Havelock’s expansion of water wave potential, the associated boundary value problem is reduced to a second kind hypersingular integral equation of order 2. The unknown function of the hypersingular integral equation is expressed as a product of a suitable weight function and an unknown polynomial. The associated hypersingular integral of order 2 is evaluated by representing it as the derivative of a singular integral of the Cauchy type which is computed by employing an idea explained in Gakhov’s book [7]. The values of the reflection coefficient computed with the help of present method match exactly with the previous results available in the literature. The energy identity is derived using the Havelock’s theorems.


Author(s):  
Yasushi Takase ◽  
Nao-Aki Noda

In this paper, the stress intensity factor (SIF) formula [Formula: see text] along the crack front of a semi-elliptical surface crack is studied. The exact SIF solution [Formula: see text] is used by solving the hypersingular integral equation of the body force method discussed in the previous paper. To obtain the accurate formula, the SIF ratio [Formula: see text]/[Formula: see text] is focused considering the exact solution [Formula: see text] of an elliptical crack. By applying the least squares method to the ratio [Formula: see text]/[Formula: see text], accurate and convenient formula is proposed. The proposed formulas may provide the accurate SIF distributions for the aspect ratio [Formula: see text]–4 better than 0.2% accuracy.


Author(s):  
Shalva S. Khubezhty

A hypersingular integral equation on the interval of integration is considered. The hypersingular integral is understood in the sense of Hadamard, that is, in the finite part. The class of such equations is widely used in problems of mathematical physics, in technology, and most importantly: in recent years, they are one of the main devices for modeling problems in electrodynamics. With the use of Chebyshev polynomials of the second kind, the unknown function, the right-hand side and the kernel are replaced in the equation. The expansion coefficients of these functions are calculated using quadrature formulas of the highest algebraic degree of accuracy, i.e., Gauss quadrature formulas. Thus, the equation is discretized. The result is an infinite system of linear algebraic equations for the expansion coefficients of the unknown function. The fact that the hypersingular integral equation in the case under consideration has a unique solution in the class of sufficiently smooth functions is taken into account. The constructed computational scheme is substantiated using the general theory of functional analysis. The calculation error is estimated under certain conditions relative to the right-hand side and the kernel of the equation. The described method for solving the hypersingular integral equation is illustrated by test examples that show the high efficiency of the method.


2019 ◽  
Vol 36 (1) ◽  
pp. 35-46
Author(s):  
J. H. Kao ◽  
K. H. Chen ◽  
J. T. Chen ◽  
S. R. Kuo

ABSTRACTIn this paper, we develop the isogeometric analysis of the dual boundary element method (IGA-DBEM) to solve the potential problem with a degenerate boundary. The non-uniform rational B-Spline (NURBS) based functions are employed to interpolate the geometry and physical function. To deal with the rank-deficiency problem due to the degenerate boundary, the hypersingular integral equation is introduced to promote the full rank for the influence matrix in the dual BEM. Finally, three numerical examples are given to verify the accuracy of our proposed method. Both circular and square domains subjected to the Dirichlet boundary condition are considered. The engineering problem containing a degenerate boundary is considered, e.g., a seepage flow problem with a sheet pile. Numerical results of the IGA-DBEM agree well with these of the exact solution and the original dual boundary element method.


Sign in / Sign up

Export Citation Format

Share Document