weakly singular
Recently Published Documents


TOTAL DOCUMENTS

780
(FIVE YEARS 192)

H-INDEX

37
(FIVE YEARS 7)

2021 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Mohamed A. Abdelkawy ◽  
Ahmed Z. M. Amin ◽  
António M. Lopes ◽  
Ishak Hashim ◽  
Mohammed M. Babatin

We propose a fractional-order shifted Jacobi–Gauss collocation method for variable-order fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK) subject to initial conditions. Using the Riemann–Liouville fractional integral and derivative and fractional-order shifted Jacobi polynomials, the approximate solutions of VO-FIDE-WSK are derived by solving systems of algebraic equations. The superior accuracy of the method is illustrated through several numerical examples.


2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Khadijeh Sadri ◽  
Kamyar Hosseini ◽  
Dumitru Baleanu ◽  
Soheil Salahshour ◽  
Choonkil Park

In the present work, the numerical solution of fractional delay integro-differential equations (FDIDEs) with weakly singular kernels is addressed by designing a Vieta–Fibonacci collocation method. These equations play immense roles in scientific fields, such as astrophysics, economy, control, biology, and electro-dynamics. The emerged fractional derivative is in the Caputo sense. By resultant operational matrices related to the Vieta–Fibonacci polynomials (VFPs) for the first time accompanied by the collocation method, the problem taken into consideration is converted into a system of algebraic equations, the solving of which leads to an approximate solution to the main problem. The existence and uniqueness of the solution of this category of fractional delay singular integro-differential equations (FDSIDEs) are investigated and proved using Krasnoselskii’s fixed-point theorem. A new formula for extracting the VFPs and their derivatives is given, and the orthogonality of the derivatives of VFPs is easily proved via it. An error bound of the residual function is estimated in a Vieta–Fibonacci-weighted Sobolev space, which shows that by properly choosing the number of terms of the series solution, the approximation error tends to zero. Ultimately, the designed algorithm is examined on four FDIDEs, whose results display the simple implementation and accuracy of the proposed scheme, compared to ones obtained from previous methods. Furthermore, the orthogonality of the VFPs leads to having sparse operational matrices, which makes the execution of the presented method easy.


Author(s):  
Sayed Arsalan Sajjadi ◽  
Hashem Saberi Najafi ◽  
Hossein Aminikhah

The solutions of weakly singular fractional integro-differential equations involving the Caputo derivative have singularity at the lower bound of the domain of integration. In this paper, we design an algorithm to prevail on this non-smooth behaviour of solutions of the nonlinear fractional integro-differential equations with a weakly singular kernel. The convergence of the proposed method is investigated. The proposed scheme is employed to solve four numerical examples in order to test its efficiency and accuracy.


Author(s):  
E. S. Shoukralla ◽  
Nermin Saber ◽  
Ahmed Y. Sayed

AbstractIn this study, we applied an advanced barycentric Lagrange interpolation formula to find the interpolate solutions of weakly singular Fredholm integral equations of the second kind. The kernel is interpolated twice concerning both variables and then is transformed into the product of five matrices; two of them are monomial basis matrices. To isolate the singularity of the kernel, we developed two techniques based on a good choice of different two sets of nodes to be distributed over the integration domain. Each set is specific to one of the kernel arguments so that the kernel values never become zero or imaginary. The significant advantage of thetwo presented techniques is the ability to gain access to an algebraic linear system equivalent to the interpolant solution without applying the collocation method. Moreover, the convergence in the mean of the interpolant solution and the maximum error norm estimation are studied. The interpolate solutions of the illustrated four examples are found strongly converging uniformly to the exact solutions.


Author(s):  
Bahman Babayar-Razlighi

In this paper we apply the Legendre wavelets basis to solve the linear weakly singular Volterra integral equation of the second kind. The basis is defined on [0,1) , and in this work we extend this interval to [0,n) for some positive integer n. For this aim we solve the problem on [0,1); then we apply the Legendre wavelets on [1,2) and use the lag solution on [0,1) to obtain the solution on [0,2) and continue this procedure. Convergence analysis of Legendre wavelets on [n,n+1), is considered in Section2. We give a convergence analysis for the proposed method, established on compactness of operators. In numerical results we give two sample problems from heat conduction. For this purpose, in Section 6 we give an equivalent theorem between the proposed heat conduction problem and an integral equation. Then we solve the equivalent integral equation by the proposed method on union of some interval and obtain the solution of the heat conduction problem. As Tables and Figures of two and three dimensional plots show, accuracy of the method is reasonable and there is not any propagation of error from lag intervals. The convergence analysis and these sample problems demonstrate the accuracy and applicability of the method.


Sign in / Sign up

Export Citation Format

Share Document