Analysis of stability and stabilization of nonlinear systems via decomposition

2015 ◽  
Vol 56 (6) ◽  
pp. 968-981 ◽  
Author(s):  
A. Yu. Aleksandrov ◽  
A. P. Zhabko ◽  
A. A. Kosov
2015 ◽  
Vol 25 (4) ◽  
pp. 815-826 ◽  
Author(s):  
Máximo Ramírez ◽  
Raúl Villafuerte ◽  
Temoatzin González ◽  
Miguel Bernal

Abstract This work introduces a novel approach to stability and stabilization of nonlinear systems with delayed multivariable inputs; it provides exponential estimates as well as a guaranteed cost of the system solutions. The result is based on an exact convex representation of the nonlinear system which allows a Lyapunov–Krasovskii functional to be applied in order to obtain sufficient conditions in the form of linear matrix inequalities. These are efficiently solved via convex optimization techniques. A real-time implementation of the developed approach on the twin rotor MIMO system is included.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Marwen Kermani ◽  
Anis Sakly

This paper focuses on the robust stability and the memory feedback stabilization problems for a class of uncertain switched nonlinear systems with multiple time-varying delays. Especially, the considered time delays depend on the subsystem number. Based on a novel common Lyapunov functional, the aggregation techniques, and the Borne and Gentina criterion, new sufficient robust stability and stabilization conditions under arbitrary switching are established. Compared with existing results, the proposed criteria are explicit, simple to use, and obtained without finding a common Lyapunov function for all subsystems through linear matrix inequalities, considered very difficult in this situation. Moreover, compared with the memoryless one, the developed controller guarantees the robust stability of the corresponding closed-loop system with more performance by minimizing the effect of the delays in the system dynamics. Finally, two numerical simulation examples are shown to prove the practical utility and the effectiveness of the proposed theories.


Author(s):  
I Ya Kats ◽  
Yekatarinburg ◽  
Russia ◽  
A A Martynyuk ◽  
Kiev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document